{"title":"Fire-induced flows for complex fire scenarios in a mechanically ventilated two-storey structure","authors":"H. Prétrel, S. Vaux","doi":"10.1177/07349041241256796","DOIUrl":null,"url":null,"abstract":"This work deals with smoke propagation through a multi-compartment assembly in case of a fire event in a nuclear installation. The scientific issues are the understanding of flows involving two modes of propagation (vent and doorway), together with the role of mechanical ventilation and oxygen backflows to the fire. The study is based on the analysis of two scenarios reproduced experimentally at large scale and simulated numerically. The main outcomes concern the comparison of the flow at a doorway and at a vent, the consequence of the smoke propagation for thermal stratification and the combined effect of the fire heat release rate and mechanical ventilation. The results highlight the performance of computational fluid dynamics simulations in predicting these complex scenarios. Low-velocity flow zones are identified, enabling the structure of these flows and their amplitudes to be quantified. This information provides new insights to improve fire risk assessment in nuclear facilities.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/07349041241256796","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work deals with smoke propagation through a multi-compartment assembly in case of a fire event in a nuclear installation. The scientific issues are the understanding of flows involving two modes of propagation (vent and doorway), together with the role of mechanical ventilation and oxygen backflows to the fire. The study is based on the analysis of two scenarios reproduced experimentally at large scale and simulated numerically. The main outcomes concern the comparison of the flow at a doorway and at a vent, the consequence of the smoke propagation for thermal stratification and the combined effect of the fire heat release rate and mechanical ventilation. The results highlight the performance of computational fluid dynamics simulations in predicting these complex scenarios. Low-velocity flow zones are identified, enabling the structure of these flows and their amplitudes to be quantified. This information provides new insights to improve fire risk assessment in nuclear facilities.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.