{"title":"Controlled deployment of a long tether to operate as a partial space elevator","authors":"Jinbang Huang, Arun K. Misra","doi":"10.1007/s42064-024-0225-5","DOIUrl":null,"url":null,"abstract":"<div><p>The deployment of a long tether to operate as a partial space elevator, starting from a nucleus in geostationary orbit, is studied. Uncontrolled deployment is an inherently unstable process because the center of orbit gradually decreases from the geostationary altitude when deployment progresses. It is also observed that the elasticity of the tether has an important effect on deployment stability. It is shown that the application of a transverse force on the main spacecraft, determined by using linear state feedback and appropriate gains, can stabilize the deployment. An LQR controller is developed. Simulations of the dynamics of the system are carried out using this controller for various parametric values of tether elasticity, deployment rates, etc., to evaluate the efficacy of the controller.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-024-0225-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The deployment of a long tether to operate as a partial space elevator, starting from a nucleus in geostationary orbit, is studied. Uncontrolled deployment is an inherently unstable process because the center of orbit gradually decreases from the geostationary altitude when deployment progresses. It is also observed that the elasticity of the tether has an important effect on deployment stability. It is shown that the application of a transverse force on the main spacecraft, determined by using linear state feedback and appropriate gains, can stabilize the deployment. An LQR controller is developed. Simulations of the dynamics of the system are carried out using this controller for various parametric values of tether elasticity, deployment rates, etc., to evaluate the efficacy of the controller.
期刊介绍:
Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.