Trading Off Initial PEM Fuel Cell Performance versus Voltage Cycling Durability for Different Carbon Support Morphologies

Timon Lazaridis, R. K. F. Della Bella, H. Gasteiger
{"title":"Trading Off Initial PEM Fuel Cell Performance versus Voltage Cycling Durability for Different Carbon Support Morphologies","authors":"Timon Lazaridis, R. K. F. Della Bella, H. Gasteiger","doi":"10.1149/1945-7111/ad5624","DOIUrl":null,"url":null,"abstract":"\n Tailored design of carbon supports and their pore morphologies is crucial to achieve the ambitious durability and performance targets for future proton exchange membrane fuel cells (PEMFCs). We compared platinum catalysts supported on solid Vulcan carbon, porous Ketjenblack carbon, and accessible porous modified Ketjenblack carbon in a voltage cycling-based accelerated stress test (AST) with frequent intermittent characterizations. We derived how catalyst morphologies affect cell performance and electrochemical properties (electrode roughness factor, ORR activity, oxygen transport resistances) at beginning-of-life (BoL) and in various states of degradation up to 200,000 voltage cycles. We confirmed the enhanced Pt surface area retention of porous carbon-supported catalysts, ascribed to well-shielded Pt particles in internal pores, but find that this comes at the expense of lower initial high current density performance already at BoL. Accessible porous carbon-supported catalysts with wider pores mostly retain those durability benefits while, simultaneously, maximizing H2/air performance at all current densities due to improved oxygen transport. We also tracked changes in catalyst accessibility throughout voltage cycling by analyzing local oxygen transport resistances and relative humidity-dependent platinum utilization. We propose that catalysts with porous carbon supports undergo oxidative pore opening, followed by continuous migration of internal Pt particles to the external carbon surface.","PeriodicalId":509718,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad5624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tailored design of carbon supports and their pore morphologies is crucial to achieve the ambitious durability and performance targets for future proton exchange membrane fuel cells (PEMFCs). We compared platinum catalysts supported on solid Vulcan carbon, porous Ketjenblack carbon, and accessible porous modified Ketjenblack carbon in a voltage cycling-based accelerated stress test (AST) with frequent intermittent characterizations. We derived how catalyst morphologies affect cell performance and electrochemical properties (electrode roughness factor, ORR activity, oxygen transport resistances) at beginning-of-life (BoL) and in various states of degradation up to 200,000 voltage cycles. We confirmed the enhanced Pt surface area retention of porous carbon-supported catalysts, ascribed to well-shielded Pt particles in internal pores, but find that this comes at the expense of lower initial high current density performance already at BoL. Accessible porous carbon-supported catalysts with wider pores mostly retain those durability benefits while, simultaneously, maximizing H2/air performance at all current densities due to improved oxygen transport. We also tracked changes in catalyst accessibility throughout voltage cycling by analyzing local oxygen transport resistances and relative humidity-dependent platinum utilization. We propose that catalysts with porous carbon supports undergo oxidative pore opening, followed by continuous migration of internal Pt particles to the external carbon surface.
不同碳支撑形态的 PEM 燃料电池初始性能与电压循环耐久性的权衡
要实现未来质子交换膜燃料电池(PEMFC)雄心勃勃的耐用性和性能目标,对碳载体及其孔隙形态进行量身定制的设计至关重要。在基于电压循环的加速应力测试(AST)中,我们比较了固体 Vulcan 碳、多孔 Ketjenblack 碳和可获得的多孔改性 Ketjenblack 碳上支持的铂催化剂,并进行了频繁的间歇性表征。我们得出了催化剂形态如何影响电池性能和电化学特性(电极粗糙度系数、ORR 活性、氧传输阻力),包括寿命开始阶段(BoL)和各种降解状态(高达 200,000 次电压循环)。我们证实了多孔碳支撑催化剂的铂表面积保留能力增强,这归因于内部孔隙中的铂颗粒具有良好的屏蔽性,但我们发现,这是以寿命开始时较低的初始高电流密度性能为代价的。而具有更宽孔隙的可进入多孔碳支撑催化剂则保留了这些耐久性优势,同时由于改善了氧气传输,在所有电流密度下都能最大限度地提高 H2/air 性能。我们还通过分析局部氧传输阻力和铂的相对湿度利用率,跟踪了催化剂在整个电压循环过程中的可及性变化。我们认为,具有多孔碳载体的催化剂在氧化过程中孔隙会打开,随后内部铂颗粒会不断迁移到外部碳表面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信