The IFMIF-DONES Diagnostics and Control Systems: Current Design Status, Integration Issues and Future Perspectives Embedding Artificial Intelligence Tools
M. Cappelli, C. Torregrosa-Martin, J. Diaz, A. Ibarra
{"title":"The IFMIF-DONES Diagnostics and Control Systems: Current Design Status, Integration Issues and Future Perspectives Embedding Artificial Intelligence Tools","authors":"M. Cappelli, C. Torregrosa-Martin, J. Diaz, A. Ibarra","doi":"10.1007/s10894-024-00414-x","DOIUrl":null,"url":null,"abstract":"<div><p>As an integral part of the European strategy for advancing fusion-generated electricity, IFMIF-DONES represents a high-intensity neutron irradiation plant with the main purpose of assessing the suitability of materials for fusion reactor applications. Its primary mission is to examine how materials respond to irradiation within a neutron flux that mimics the conditions expected in the first wall of the proposed DEMO reactor, which is intended to succeed ITER. Consequently, IFMIF-DONES, whose construction is slated to commence shortly, plays a pivotal role in aiding the development, approval, and safe operation of DEMO, as well as future fusion power plants. This paper provides a quick overview of the current development of the IFMIF-DONES neutron source with a particular snapshot of the present engineering design status for what concerns the instrumentation and control systems together with its complex diagnostics, that guarantees the safe monitoring, supervision and regulation of all operations. The current status of design, after the completion of the preliminary design phase is presented, as well as the existing and future plans for their integration also using some of the new capabilities offered by Artificial Intelligence tools.</p></div>","PeriodicalId":634,"journal":{"name":"Journal of Fusion Energy","volume":"43 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10894-024-00414-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fusion Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10894-024-00414-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
As an integral part of the European strategy for advancing fusion-generated electricity, IFMIF-DONES represents a high-intensity neutron irradiation plant with the main purpose of assessing the suitability of materials for fusion reactor applications. Its primary mission is to examine how materials respond to irradiation within a neutron flux that mimics the conditions expected in the first wall of the proposed DEMO reactor, which is intended to succeed ITER. Consequently, IFMIF-DONES, whose construction is slated to commence shortly, plays a pivotal role in aiding the development, approval, and safe operation of DEMO, as well as future fusion power plants. This paper provides a quick overview of the current development of the IFMIF-DONES neutron source with a particular snapshot of the present engineering design status for what concerns the instrumentation and control systems together with its complex diagnostics, that guarantees the safe monitoring, supervision and regulation of all operations. The current status of design, after the completion of the preliminary design phase is presented, as well as the existing and future plans for their integration also using some of the new capabilities offered by Artificial Intelligence tools.
期刊介绍:
The Journal of Fusion Energy features original research contributions and review papers examining and the development and enhancing the knowledge base of thermonuclear fusion as a potential power source. It is designed to serve as a journal of record for the publication of original research results in fundamental and applied physics, applied science and technological development. The journal publishes qualified papers based on peer reviews.
This journal also provides a forum for discussing broader policies and strategies that have played, and will continue to play, a crucial role in fusion programs. In keeping with this theme, readers will find articles covering an array of important matters concerning strategy and program direction.