Mark Saunders, R. Steeves, Leah P. Macintyre, Kyle M. Knysh, Michael Coffin, M. Boudreau, Christina C. Pater, M R van den Heuvel, S. Courtenay
{"title":"Monitoring estuarine fish communities – environmental DNA (eDNA) metabarcoding as a complement to beach seining","authors":"Mark Saunders, R. Steeves, Leah P. Macintyre, Kyle M. Knysh, Michael Coffin, M. Boudreau, Christina C. Pater, M R van den Heuvel, S. Courtenay","doi":"10.1139/cjfas-2023-0227","DOIUrl":null,"url":null,"abstract":"Environmental DNA (eDNA) metabarcoding offers advantages over physical capture for identifying and quantifying animals in monitoring programs. In this study, the fish community was sampled at three stations (inner, middle, and outer estuary) in three estuaries in August 2020, and four estuaries in June and August 2021 (Prince Edward Island, Canada) using both beach seining and eDNA metabarcoding. Two 12S primer sets, 12S-160 and 12S-248F, with different amplicon lengths, yielded similar results. eDNA metabarcoding consistently detected species captured by 186 co-located beach seines and revealed additional species. It also detected monthly (June-August), interannual (2020-2021), and spatial shifts in the fish community, distinguishing stations separated by as little as 0.4 km. Positive correlations existed between eDNA metabarcoding species reads and beach seining captures. These findings suggest eDNA metabarcoding complements physical capture methods for characterising nearshore fish communities in Prince Edward Island’s estuaries. While eDNA techniques lack certain population parameter information provided by physical methods, such as size, sex, and age structure, they offer a more comprehensive diversity assessment and presence-abundance insights, especially in inaccessible environments.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"119 5","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1139/cjfas-2023-0227","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Environmental DNA (eDNA) metabarcoding offers advantages over physical capture for identifying and quantifying animals in monitoring programs. In this study, the fish community was sampled at three stations (inner, middle, and outer estuary) in three estuaries in August 2020, and four estuaries in June and August 2021 (Prince Edward Island, Canada) using both beach seining and eDNA metabarcoding. Two 12S primer sets, 12S-160 and 12S-248F, with different amplicon lengths, yielded similar results. eDNA metabarcoding consistently detected species captured by 186 co-located beach seines and revealed additional species. It also detected monthly (June-August), interannual (2020-2021), and spatial shifts in the fish community, distinguishing stations separated by as little as 0.4 km. Positive correlations existed between eDNA metabarcoding species reads and beach seining captures. These findings suggest eDNA metabarcoding complements physical capture methods for characterising nearshore fish communities in Prince Edward Island’s estuaries. While eDNA techniques lack certain population parameter information provided by physical methods, such as size, sex, and age structure, they offer a more comprehensive diversity assessment and presence-abundance insights, especially in inaccessible environments.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.