Jie Liu, Ke Chang, Xueping Zhu, Xueyao Wang, Binbin Lin, Wenjun Cai
{"title":"Simulation and attribution analysis of runoff–sediment in the Upper Basin of Fenhe River, China","authors":"Jie Liu, Ke Chang, Xueping Zhu, Xueyao Wang, Binbin Lin, Wenjun Cai","doi":"10.2166/wcc.2024.518","DOIUrl":null,"url":null,"abstract":"\n \n High-precision simulation of runoff–sediment is a significant challenge due to the combined impacts of climate change and human activities. In this paper, runoff–sediment processes were simulated, and their impact attribution was analyzed using the Soil and Water Assessment Tool (SWAT) model in the upper Fenhe River basin of the Loess Plateau, China. A SWAT model was constructed to assess its applicability during the historical baseline period, which reflects low human activity. However, the simulation results for the comprehensive impact period, using the calibrated historical baseline model, were unsatisfactory. Consequently, a method was proposed to enhance the accuracy of simulation results by considering the presence of soil-retaining dams. This method incorporates large and small soil-retaining dams as reservoirs and ponds, respectively, into SWAT. The results indicate that the accuracy of runoff and sediment simulation reaches a satisfactory level. The attribution analysis results show that human activities have a greater impact on runoff and sediment than climate change, with land use change and soil-retaining dams being particularly significant. The construction of soil-retaining dams plays a more significant role in reducing runoff and sediment. These findings provide valuable insights into the management and utilization of runoff and sediment in river basins.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"112 14","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wcc.2024.518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
High-precision simulation of runoff–sediment is a significant challenge due to the combined impacts of climate change and human activities. In this paper, runoff–sediment processes were simulated, and their impact attribution was analyzed using the Soil and Water Assessment Tool (SWAT) model in the upper Fenhe River basin of the Loess Plateau, China. A SWAT model was constructed to assess its applicability during the historical baseline period, which reflects low human activity. However, the simulation results for the comprehensive impact period, using the calibrated historical baseline model, were unsatisfactory. Consequently, a method was proposed to enhance the accuracy of simulation results by considering the presence of soil-retaining dams. This method incorporates large and small soil-retaining dams as reservoirs and ponds, respectively, into SWAT. The results indicate that the accuracy of runoff and sediment simulation reaches a satisfactory level. The attribution analysis results show that human activities have a greater impact on runoff and sediment than climate change, with land use change and soil-retaining dams being particularly significant. The construction of soil-retaining dams plays a more significant role in reducing runoff and sediment. These findings provide valuable insights into the management and utilization of runoff and sediment in river basins.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.