{"title":"Linear and Nonlinear Formulation of Phase Field Model with Generalized Polynomial Degradation Functions for Brittle Fractures","authors":"Ala Tabiei, Li Meng","doi":"10.1007/s10338-024-00501-8","DOIUrl":null,"url":null,"abstract":"<div><p>The classical phase field model has wide applications for brittle materials, but nonlinearity and inelasticity are found in its stress–strain curve. The degradation function in the classical phase field model makes it a linear formulation of phase field and computationally attractive, but stiffness reduction happens even at low strain. In this paper, generalized polynomial degradation functions are investigated to solve this problem. The first derivative of degradation function at zero phase is added as an extra constraint, which renders higher-order polynomial degradation function and nonlinear formulation of phase field. Compared with other degradation functions (like algebraic fraction function, exponential function, and trigonometric function), this polynomial degradation function enables phase in [0, 1] (should still avoid the first derivative of degradation function at zero phase to be 0), so there is no <span>\\(\\Gamma \\)</span> convergence problem. The good and meaningful finding is that, under the same fracture strength, the proposed phase field model has a larger length scale, which means larger element size and better computational efficiency. This proposed phase field model is implemented in LS-DYNA user-defined element and user-defined material and solved by the Newton–Raphson method. A tensile test shows that the first derivative of degradation function at zero phase does impact stress–strain curve. Mode I, mode II, and mixed-mode examples show the feasibility of the proposed phase field model in simulating brittle fracture.</p></div>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":"37 5","pages":"643 - 661"},"PeriodicalIF":2.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10338-024-00501-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Solida Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10338-024-00501-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The classical phase field model has wide applications for brittle materials, but nonlinearity and inelasticity are found in its stress–strain curve. The degradation function in the classical phase field model makes it a linear formulation of phase field and computationally attractive, but stiffness reduction happens even at low strain. In this paper, generalized polynomial degradation functions are investigated to solve this problem. The first derivative of degradation function at zero phase is added as an extra constraint, which renders higher-order polynomial degradation function and nonlinear formulation of phase field. Compared with other degradation functions (like algebraic fraction function, exponential function, and trigonometric function), this polynomial degradation function enables phase in [0, 1] (should still avoid the first derivative of degradation function at zero phase to be 0), so there is no \(\Gamma \) convergence problem. The good and meaningful finding is that, under the same fracture strength, the proposed phase field model has a larger length scale, which means larger element size and better computational efficiency. This proposed phase field model is implemented in LS-DYNA user-defined element and user-defined material and solved by the Newton–Raphson method. A tensile test shows that the first derivative of degradation function at zero phase does impact stress–strain curve. Mode I, mode II, and mixed-mode examples show the feasibility of the proposed phase field model in simulating brittle fracture.
期刊介绍:
Acta Mechanica Solida Sinica aims to become the best journal of solid mechanics in China and a worldwide well-known one in the field of mechanics, by providing original, perspective and even breakthrough theories and methods for the research on solid mechanics.
The Journal is devoted to the publication of research papers in English in all fields of solid-state mechanics and its related disciplines in science, technology and engineering, with a balanced coverage on analytical, experimental, numerical and applied investigations. Articles, Short Communications, Discussions on previously published papers, and invitation-based Reviews are published bimonthly. The maximum length of an article is 30 pages, including equations, figures and tables