Intelligent stability monitoring and improvement of grid‐connected converter under weighted average control

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
IET Smart Grid Pub Date : 2024-06-11 DOI:10.1049/stg2.12176
Yuan Qiu, Yanbo Wang, Yanjun Tian, Zhe Chen
{"title":"Intelligent stability monitoring and improvement of grid‐connected converter under weighted average control","authors":"Yuan Qiu, Yanbo Wang, Yanjun Tian, Zhe Chen","doi":"10.1049/stg2.12176","DOIUrl":null,"url":null,"abstract":"This article presents an intelligent stability monitoring and improvement method for the grid‐connected converter system. The model of grid‐connected converter, based on the weighted average current feedback (WACF) and weighted average voltage feedforward (WAVF) control, is first established. Then, the time‐varying grid impedance and parameter perturbation of LCL‐filter are precisely identified by artificial neural network (ANN) module in real time. Furthermore, the control parameters are adaptively tuned by certain rules based on the predicted parameters to increase the high‐frequency stability margin of converter system. Simulation and experimental results are given to validate the proposed identification and parameter tuning method. The proposed method is able to monitor the real‐time operation state of the grid‐connected converter and improve the self‐adaptivity of the grid‐connected converter system against parameter perturbation.","PeriodicalId":36490,"journal":{"name":"IET Smart Grid","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Smart Grid","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/stg2.12176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents an intelligent stability monitoring and improvement method for the grid‐connected converter system. The model of grid‐connected converter, based on the weighted average current feedback (WACF) and weighted average voltage feedforward (WAVF) control, is first established. Then, the time‐varying grid impedance and parameter perturbation of LCL‐filter are precisely identified by artificial neural network (ANN) module in real time. Furthermore, the control parameters are adaptively tuned by certain rules based on the predicted parameters to increase the high‐frequency stability margin of converter system. Simulation and experimental results are given to validate the proposed identification and parameter tuning method. The proposed method is able to monitor the real‐time operation state of the grid‐connected converter and improve the self‐adaptivity of the grid‐connected converter system against parameter perturbation.
加权平均控制下并网变流器的智能稳定性监测与改进
本文提出了一种并网变流器系统的智能稳定性监测和改进方法。首先建立了基于加权平均电流反馈(WACF)和加权平均电压前馈(WAVF)控制的并网变流器模型。然后,通过人工神经网络(ANN)模块实时精确地识别时变电网阻抗和 LCL 滤波器的参数扰动。此外,根据预测的参数,通过一定的规则对控制参数进行自适应调节,以增加变流器系统的高频稳定裕度。仿真和实验结果验证了所提出的识别和参数调整方法。所提出的方法能够监测并网变流器的实时运行状态,并提高并网变流器系统对参数扰动的自适应能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Smart Grid
IET Smart Grid Computer Science-Computer Networks and Communications
CiteScore
6.70
自引率
4.30%
发文量
41
审稿时长
29 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信