{"title":"Better to bluff than run: conservation implications of feral-cat prey selectivity","authors":"John L. Read, K. Moseby, Hugh W. McGregor","doi":"10.1071/wr23138","DOIUrl":null,"url":null,"abstract":"Context Predators typically select prey on the basis of their availability and traits such as body size, speed, camouflage and behaviour that influence ease of capture. Such selectivity, particularly by invasive predators, can disproportionately affect the conservation status of prey. Control of top-order predators can also trigger trophic cascades if subordinate predators have different prey preference. Aims We aimed to document prey selectivity of feral cats by comparing their diet with prey availability over a 27-year study in an Australian desert. Methods Stomach-content and demographic data were recorded from 2293 feral cats, showing 3939 vertebrate prey. These were compared with vertebrate-prey availability estimated from 224,472 pitfall-trap nights, 9791 Elliott-trap nights and opportunistic sampling that accumulated 9247 small mammal and 32,053 herptile records. Potential bird availability was assessed through 2072 quantitative counts amounting to 29,832 bird records. We compared cat selectivity among species, guilds, and physical and behavioural traits of potential prey. Key results Prey guild selectivity from two quantitative subsets of these data indicated that cats preferentially selected medium-sized rodents, snakes and ground-nesting birds over other prey guilds, and also preyed extensively on rabbits, for which selectivity could not be assessed. Species that froze or responded defensively to predators were less favoured than were prey that fled, including fast-evading species. Species inhabiting dunes were hunted more frequently relative to their abundance than were closely related species on stony plains. Conclusions The size, habitat preference and response to predators of potential prey species affect their targeting by feral cats. Implications Our results assist assessment of risk to wildlife species from cat predation and suggest that cat control will trigger changes in the relative abundance of prey species depending on their size, habitat use and behaviour.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/wr23138","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Context Predators typically select prey on the basis of their availability and traits such as body size, speed, camouflage and behaviour that influence ease of capture. Such selectivity, particularly by invasive predators, can disproportionately affect the conservation status of prey. Control of top-order predators can also trigger trophic cascades if subordinate predators have different prey preference. Aims We aimed to document prey selectivity of feral cats by comparing their diet with prey availability over a 27-year study in an Australian desert. Methods Stomach-content and demographic data were recorded from 2293 feral cats, showing 3939 vertebrate prey. These were compared with vertebrate-prey availability estimated from 224,472 pitfall-trap nights, 9791 Elliott-trap nights and opportunistic sampling that accumulated 9247 small mammal and 32,053 herptile records. Potential bird availability was assessed through 2072 quantitative counts amounting to 29,832 bird records. We compared cat selectivity among species, guilds, and physical and behavioural traits of potential prey. Key results Prey guild selectivity from two quantitative subsets of these data indicated that cats preferentially selected medium-sized rodents, snakes and ground-nesting birds over other prey guilds, and also preyed extensively on rabbits, for which selectivity could not be assessed. Species that froze or responded defensively to predators were less favoured than were prey that fled, including fast-evading species. Species inhabiting dunes were hunted more frequently relative to their abundance than were closely related species on stony plains. Conclusions The size, habitat preference and response to predators of potential prey species affect their targeting by feral cats. Implications Our results assist assessment of risk to wildlife species from cat predation and suggest that cat control will trigger changes in the relative abundance of prey species depending on their size, habitat use and behaviour.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.