From teaching experience. XIV. On the variety of tetrahedrons

Yuriy Voytehovskiy
{"title":"From teaching experience. XIV. On the variety of tetrahedrons","authors":"Yuriy Voytehovskiy","doi":"10.19110/geov.2024.4.4","DOIUrl":null,"url":null,"abstract":"The paper proposes the derivation of 25 combinatorial-geometric kinds of tetrahedrons belonging to 8 point symmetry groups. Among them are 3 simple forms: cubic (-43m), tetragonal (-42m) and rhombic (222) tetrahedrons; and 5 combinations: trigonal pyramid and monohedron (3m), 2 planar dihedrons (mm2, 2 kinds), 2 axial dihedrons (2, 3 kinds), planar dihedron and 2 monohedrons (m, 5 kinds), 4 monohedrons (1, 11 kinds). It is shown that tetrahedrons with symmetry 23, -4 and 3 — subgroups of the point symmetry group of the cubic tetrahedron — are impossible. The example is recommended for consideration in the course of crystallography on «simple forms and their combinations».","PeriodicalId":23572,"journal":{"name":"Vestnik of geosciences","volume":"25 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik of geosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19110/geov.2024.4.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper proposes the derivation of 25 combinatorial-geometric kinds of tetrahedrons belonging to 8 point symmetry groups. Among them are 3 simple forms: cubic (-43m), tetragonal (-42m) and rhombic (222) tetrahedrons; and 5 combinations: trigonal pyramid and monohedron (3m), 2 planar dihedrons (mm2, 2 kinds), 2 axial dihedrons (2, 3 kinds), planar dihedron and 2 monohedrons (m, 5 kinds), 4 monohedrons (1, 11 kinds). It is shown that tetrahedrons with symmetry 23, -4 and 3 — subgroups of the point symmetry group of the cubic tetrahedron — are impossible. The example is recommended for consideration in the course of crystallography on «simple forms and their combinations».
教学经验。XIV.关于四面体的多样性
论文提出了属于 8 个点对称组的 25 种组合几何四面体的推导。其中有 3 种简单形式:立方体(-43m)、四方体(-42m)和菱形(222)四面体;5 种组合形式:三棱锥和单面体(3m)、2 个平面二面体(mm2,2 种)、2 个轴二面体(2,3 种)、平面二面体和 2 个单面体(m,5 种)、4 个单面体(1,11 种)。结果表明,具有对称性 23、-4 和 3(立方四面体点对称群的子群)的四面体是不可能存在的。建议在晶体学 "简单形式及其组合 "课程中考虑该示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信