{"title":"Fusion of finite element and machine learning methods to predict rock shear strength parameters","authors":"Defu Zhu, Biaobiao Yu, Deyu Wang, Yujiang Zhang","doi":"10.1093/jge/gxae064","DOIUrl":null,"url":null,"abstract":"\n The trial-and-error method for calibrating rock mechanics parameters has the disadvantages in complexity, time-consuming and difficulty in ensuring accuracy. Harnessing the repeatability and scalability intrinsic to numerical simulation calculations and amalgamating them with the data-driven attributes of machine learning methods. The study utilised the finite element analysis software RS2 to establish 252 sets of sandstone sample data. The Recursive Feature Elimination and Cross-Validation (RFECV) method was employed for feature selection. The shear strength parameters of sandstone were predicted using machine learning models optimised by Particle Swarm Optimization (PSO) algorithm, including BP neural network (BP), Bayesian Ridge Regression (BRR), Support Vector Regression (SVR), and Light Gradient Boosting Machine (LightGBM). The predicted value of cohesion is proposed as the input feature to predict the friction angle. The results indicate that the optimal input characteristics for predicting cohesion are elastic modulus, Poisson's ratio, peak stress, and peak strain, while the optimal input characteristics for predicting friction angle are peak stress and cohesion. The PSO-SVR model demonstrates the best performance. The maximum error between the predicted values of cohesion and friction angle and the calculated results of RSData program is 3.5% and 4.31%, respectively. The finite element calculation is in good agreement with the stress-strain curve obtained in the laboratory. The sensitivity analysis indicates that SVR's prediction performance for cohesion and friction angle tends to be stable when the sample size is greater than 25. These results offer a valuable reference for accurately predicting rock mechanics parameters.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"22 15","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/jge/gxae064","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The trial-and-error method for calibrating rock mechanics parameters has the disadvantages in complexity, time-consuming and difficulty in ensuring accuracy. Harnessing the repeatability and scalability intrinsic to numerical simulation calculations and amalgamating them with the data-driven attributes of machine learning methods. The study utilised the finite element analysis software RS2 to establish 252 sets of sandstone sample data. The Recursive Feature Elimination and Cross-Validation (RFECV) method was employed for feature selection. The shear strength parameters of sandstone were predicted using machine learning models optimised by Particle Swarm Optimization (PSO) algorithm, including BP neural network (BP), Bayesian Ridge Regression (BRR), Support Vector Regression (SVR), and Light Gradient Boosting Machine (LightGBM). The predicted value of cohesion is proposed as the input feature to predict the friction angle. The results indicate that the optimal input characteristics for predicting cohesion are elastic modulus, Poisson's ratio, peak stress, and peak strain, while the optimal input characteristics for predicting friction angle are peak stress and cohesion. The PSO-SVR model demonstrates the best performance. The maximum error between the predicted values of cohesion and friction angle and the calculated results of RSData program is 3.5% and 4.31%, respectively. The finite element calculation is in good agreement with the stress-strain curve obtained in the laboratory. The sensitivity analysis indicates that SVR's prediction performance for cohesion and friction angle tends to be stable when the sample size is greater than 25. These results offer a valuable reference for accurately predicting rock mechanics parameters.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.