Computational Method for Optimal Electrolyte Screening Using Bayesian Optimization and Physics Based Battery Model

Vamsi Krishna Garapati, N. N. Dingari, Mahesh Mynam, Beena Rai
{"title":"Computational Method for Optimal Electrolyte Screening Using Bayesian Optimization and Physics Based Battery Model","authors":"Vamsi Krishna Garapati, N. N. Dingari, Mahesh Mynam, Beena Rai","doi":"10.1149/1945-7111/ad570b","DOIUrl":null,"url":null,"abstract":"\n Lithium-ion batteries (LIBs) powering electric vehicles and large-scale energy storage depend significantly on the composition of liquid electrolyte for optimal performance. We propose a framework coupling Bayesian optimization and physics based battery models to identify electrolytes optimal for specific set of requirements such as less capacity fade and internal heating etc. Our approach is validated through multiple case studies, demonstrating the framework’s efficacy in optimizing electrolyte properties. Additionally, we introduce a deviation index to quantify the proximity of the optimal electrolyte to those in a predefined database. With adaptability to various LIB metrics and battery chemistries, it provides a systematic and efficient approach for screening electrolytes based on system-level performance using physics-based models, contributing to advancements in battery technology for sustainable energy storage systems.","PeriodicalId":509718,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad570b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-ion batteries (LIBs) powering electric vehicles and large-scale energy storage depend significantly on the composition of liquid electrolyte for optimal performance. We propose a framework coupling Bayesian optimization and physics based battery models to identify electrolytes optimal for specific set of requirements such as less capacity fade and internal heating etc. Our approach is validated through multiple case studies, demonstrating the framework’s efficacy in optimizing electrolyte properties. Additionally, we introduce a deviation index to quantify the proximity of the optimal electrolyte to those in a predefined database. With adaptability to various LIB metrics and battery chemistries, it provides a systematic and efficient approach for screening electrolytes based on system-level performance using physics-based models, contributing to advancements in battery technology for sustainable energy storage systems.
利用贝叶斯优化和基于物理的电池模型进行最佳电解质筛选的计算方法
为电动汽车和大规模储能提供动力的锂离子电池(LIB)的最佳性能很大程度上取决于液态电解质的成分。我们提出了一个将贝叶斯优化和基于物理的电池模型相结合的框架,以确定满足特定要求(如减少容量衰减和内部加热等)的最佳电解质。我们的方法通过多个案例研究得到了验证,证明了该框架在优化电解质特性方面的功效。此外,我们还引入了偏差指数,以量化最佳电解质与预定义数据库中电解质的接近程度。该框架可适应各种 LIB 指标和电池化学性质,它提供了一种系统、高效的方法,可利用基于物理的模型,根据系统级性能筛选电解质,从而推动可持续储能系统电池技术的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信