{"title":"Size dependence of melting process of armchair hexagonal boron nitride nanoribbon","authors":"H. T. T. Nguyen, Van Luong Tran, T. T. Ngo","doi":"10.15625/0868-3166/19484","DOIUrl":null,"url":null,"abstract":"The dependence on the initial configuration size of armchair hexagonal boron nitride nanoribbon (h-BNNR) is investigated by molecular dynamics simulation. The initial configuration size of armchair h-BNNR containing 10000, 20000, and 30000 identical atoms of B and N is heated from 50 K to 6000 K via Tersoff potentials to study the dependence on the initial configuration size of the phase transition from crystal to liquid of armchair h-BNNR. Some results can be listed: the phase transition exhibits a first-order type; the phase transition from crystal to liquid states depends on the initial configuration size; the melting points of 10000, 20000, and 30000 atoms are 3640 K, 4000 K, and 4400 K, respectively; the dependence on the heating rate of the armchair h-BNNR is considered for the case of 20000 atoms; in this study range, the melting point decreases as the heating rate decreases; the atomic mechanism of melting process is studied by analyzing the parameter and the appearance of the liquid-like atoms based on the critical value ; the critical value is used to classify solid-like and liquid-like atoms; the appearance of liquid-like atoms upon heating starts from the edges and grow inward; at the phase transition temperature, almost the entire crystal structure of the armchair h-BNNR configuration collapses.","PeriodicalId":504426,"journal":{"name":"Communications in Physics","volume":"4 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/0868-3166/19484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The dependence on the initial configuration size of armchair hexagonal boron nitride nanoribbon (h-BNNR) is investigated by molecular dynamics simulation. The initial configuration size of armchair h-BNNR containing 10000, 20000, and 30000 identical atoms of B and N is heated from 50 K to 6000 K via Tersoff potentials to study the dependence on the initial configuration size of the phase transition from crystal to liquid of armchair h-BNNR. Some results can be listed: the phase transition exhibits a first-order type; the phase transition from crystal to liquid states depends on the initial configuration size; the melting points of 10000, 20000, and 30000 atoms are 3640 K, 4000 K, and 4400 K, respectively; the dependence on the heating rate of the armchair h-BNNR is considered for the case of 20000 atoms; in this study range, the melting point decreases as the heating rate decreases; the atomic mechanism of melting process is studied by analyzing the parameter and the appearance of the liquid-like atoms based on the critical value ; the critical value is used to classify solid-like and liquid-like atoms; the appearance of liquid-like atoms upon heating starts from the edges and grow inward; at the phase transition temperature, almost the entire crystal structure of the armchair h-BNNR configuration collapses.