Wenjun Huang, Suyun Shen, Zhouqian Wang, Jie Yang, Haiyan Lv, Hua Tian, J. Burdon, Caihong Zhong
{"title":"Freezing Points of Fruit from Different Kiwifruit Genotypes at Harvest and during Cold Storage","authors":"Wenjun Huang, Suyun Shen, Zhouqian Wang, Jie Yang, Haiyan Lv, Hua Tian, J. Burdon, Caihong Zhong","doi":"10.3390/horticulturae10060624","DOIUrl":null,"url":null,"abstract":"Fruit storage is optimized at the lowest safe temperature to maximize storage life whilst avoiding chilling or freezing injury. The few published studies of freezing in kiwifruit (Actinidia spp.) have been conducted with A. chinensis var. deliciosa ‘Hayward’ fruit, with freezing temperatures reported in the range of −1.5 °C to −2.5 °C. In China, a large number of kiwifruit cultivars have been commercialized recently, with at least ten being commonly planted. In this research, freshly harvested fruits from 45 kiwifruit germplasm accessions were measured for freezing point, soluble solids content (SSC) and water content (WC). The difference in freezing point of different tissue zones within a fruit and after different periods of cold storage were determined for the fruit of three representative main cultivars: the green-fleshed ‘Hayward’, the red-fleshed A. chinensis var. chinensis ‘Donghong’, and the yellow-fleshed interspecific hybrid A. eriantha × A. chinensis ‘Jinyan’. The the freezing point of kiwifruit was found to be highly correlated with the SSC. This relationship was found irrespective of whether the measurement was made at harvest, at different places in the fruit, or after ripening during storage. These findings agree with previous reports for kiwifruit and other fruits, although it appears that the relationship may differ among kiwifruit cultivars, something not previously reported and which requires further confirmation.","PeriodicalId":507445,"journal":{"name":"Horticulturae","volume":"3 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulturae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/horticulturae10060624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Fruit storage is optimized at the lowest safe temperature to maximize storage life whilst avoiding chilling or freezing injury. The few published studies of freezing in kiwifruit (Actinidia spp.) have been conducted with A. chinensis var. deliciosa ‘Hayward’ fruit, with freezing temperatures reported in the range of −1.5 °C to −2.5 °C. In China, a large number of kiwifruit cultivars have been commercialized recently, with at least ten being commonly planted. In this research, freshly harvested fruits from 45 kiwifruit germplasm accessions were measured for freezing point, soluble solids content (SSC) and water content (WC). The difference in freezing point of different tissue zones within a fruit and after different periods of cold storage were determined for the fruit of three representative main cultivars: the green-fleshed ‘Hayward’, the red-fleshed A. chinensis var. chinensis ‘Donghong’, and the yellow-fleshed interspecific hybrid A. eriantha × A. chinensis ‘Jinyan’. The the freezing point of kiwifruit was found to be highly correlated with the SSC. This relationship was found irrespective of whether the measurement was made at harvest, at different places in the fruit, or after ripening during storage. These findings agree with previous reports for kiwifruit and other fruits, although it appears that the relationship may differ among kiwifruit cultivars, something not previously reported and which requires further confirmation.