Inference of Constant-Stress Model of Fréchet Distribution under a Maximum Ranked Set Sampling with Unequal Samples

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jia Liu, Liang Wang, Y. Tripathi, Y. Lio
{"title":"Inference of Constant-Stress Model of Fréchet Distribution under a Maximum Ranked Set Sampling with Unequal Samples","authors":"Jia Liu, Liang Wang, Y. Tripathi, Y. Lio","doi":"10.3390/axioms13060394","DOIUrl":null,"url":null,"abstract":"This paper explores the inference for a constant-stress accelerated life test under a ranked set sampling scenario. When the lifetime of products follows the Fréchet distribution, and the failure times are collected under a maximum ranked set sampling with unequal samples, classical and Bayesian approaches are proposed, respectively. Maximum likelihood estimators along with the existence and uniqueness of model parameters are established, and the corresponding asymptotic confidence intervals are constructed based on asymptotic theory. Under squared error loss, Bayesian estimation and highest posterior density confidence intervals are provided, and an associated Monte-Carlo sampling algorithm is proposed for complex posterior computation. Finally, extensive simulation studies are conducted to demonstrate the performance of different methods, and a real-data example is also presented for applications.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/axioms13060394","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores the inference for a constant-stress accelerated life test under a ranked set sampling scenario. When the lifetime of products follows the Fréchet distribution, and the failure times are collected under a maximum ranked set sampling with unequal samples, classical and Bayesian approaches are proposed, respectively. Maximum likelihood estimators along with the existence and uniqueness of model parameters are established, and the corresponding asymptotic confidence intervals are constructed based on asymptotic theory. Under squared error loss, Bayesian estimation and highest posterior density confidence intervals are provided, and an associated Monte-Carlo sampling algorithm is proposed for complex posterior computation. Finally, extensive simulation studies are conducted to demonstrate the performance of different methods, and a real-data example is also presented for applications.
不等样最大排序集抽样下的弗雷谢分布恒应力模型推断
本文探讨了排序集抽样情况下恒应力加速寿命测试的推理。当产品寿命服从弗雷谢特分布,且故障时间是在不等样本的最大排序集抽样下采集时,分别提出了经典方法和贝叶斯方法。建立了最大似然估计值以及模型参数的存在性和唯一性,并基于渐近理论构建了相应的渐近置信区间。在平方误差损失条件下,提供了贝叶斯估计和最高后验密度置信区间,并为复杂的后验计算提出了相关的蒙特卡洛采样算法。最后,还进行了大量模拟研究,以证明不同方法的性能,并提供了一个实际数据示例供应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信