Unveiling the diverse applications and problem-solving capabilities of the MOM-GEC hybrid approach: a comprehensive systematic review

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Mariem Abdi, Taoufik Aguili
{"title":"Unveiling the diverse applications and problem-solving capabilities of the MOM-GEC hybrid approach: a comprehensive systematic review","authors":"Mariem Abdi,&nbsp;Taoufik Aguili","doi":"10.1007/s10825-024-02169-2","DOIUrl":null,"url":null,"abstract":"<div><p>Hybrid numerical methods show great potential in enhancing conventional approaches, particularly when dealing with complex structures beyond the capabilities of individual methods or standard software. This paper provides a comprehensive overview of the Method of Moments combined with the Generalized Equivalent Circuit (MOM-GEC) in electromagnetic modeling. Through comparative analysis with traditional numerical methods such as the Method of Moments, Finite Difference Time Domain (FDTD), and Finite Element Method (FEM), MOM-GEC’s unique advantages in adaptability, accuracy, and computational efficiency are highlighted. Mathematical formulations based on equations are integrated to clarify the method’s concepts and integration processes. The study showcases MOM-GEC’s successful deployment in various applications, demonstrating its versatility and efficacy in intricate scenarios such as antenna arrays, graphene-based metamaterial devices, and dosimetry in partially enclosed environments. Each case study undergoes re-evaluation by incorporating the generalized equivalent circuit approach, emphasizing MOM-GEC’s effectiveness in addressing diverse challenges. This underscores MOM-GEC’s versatility and efficacy across complex scenarios, reaffirming its value in electromagnetic modeling.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"23 4","pages":"791 - 818"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02169-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Hybrid numerical methods show great potential in enhancing conventional approaches, particularly when dealing with complex structures beyond the capabilities of individual methods or standard software. This paper provides a comprehensive overview of the Method of Moments combined with the Generalized Equivalent Circuit (MOM-GEC) in electromagnetic modeling. Through comparative analysis with traditional numerical methods such as the Method of Moments, Finite Difference Time Domain (FDTD), and Finite Element Method (FEM), MOM-GEC’s unique advantages in adaptability, accuracy, and computational efficiency are highlighted. Mathematical formulations based on equations are integrated to clarify the method’s concepts and integration processes. The study showcases MOM-GEC’s successful deployment in various applications, demonstrating its versatility and efficacy in intricate scenarios such as antenna arrays, graphene-based metamaterial devices, and dosimetry in partially enclosed environments. Each case study undergoes re-evaluation by incorporating the generalized equivalent circuit approach, emphasizing MOM-GEC’s effectiveness in addressing diverse challenges. This underscores MOM-GEC’s versatility and efficacy across complex scenarios, reaffirming its value in electromagnetic modeling.

Abstract Image

Abstract Image

揭示 MOM-GEC 混合方法的各种应用和解决问题的能力:全面系统审查
混合数值方法在增强传统方法方面显示出巨大潜力,尤其是在处理超出单个方法或标准软件能力的复杂结构时。本文全面概述了矩量法与广义等效电路(MOM-GEC)在电磁建模中的结合。通过与矩量法、有限差分时域法(FDTD)和有限元法(FEM)等传统数值方法的对比分析,MOM-GEC 在适应性、准确性和计算效率方面的独特优势得到了凸显。研究还整合了基于方程的数学公式,以阐明该方法的概念和整合过程。研究展示了 MOM-GEC 在各种应用中的成功部署,证明了其在天线阵列、基于石墨烯的超材料设备以及部分封闭环境中的剂量测定等复杂场景中的多功能性和有效性。通过采用广义等效电路方法,对每个案例研究进行了重新评估,强调了 MOM-GEC 在应对各种挑战方面的有效性。这强调了 MOM-GEC 在复杂情况下的多功能性和有效性,再次肯定了其在电磁建模中的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Electronics
Journal of Computational Electronics ENGINEERING, ELECTRICAL & ELECTRONIC-PHYSICS, APPLIED
CiteScore
4.50
自引率
4.80%
发文量
142
审稿时长
>12 weeks
期刊介绍: he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered. In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信