F. Menzri, T. Boutabba, I. Benlaloui, Haneen Bawayan, Mohmed I. Mosaad, Mohamed Metwally Mahmoud
{"title":"Applications of hybrid SMC and FLC for augmentation of MPPT method in a wind-PV-battery configuration","authors":"F. Menzri, T. Boutabba, I. Benlaloui, Haneen Bawayan, Mohmed I. Mosaad, Mohamed Metwally Mahmoud","doi":"10.1177/0309524x241254364","DOIUrl":null,"url":null,"abstract":"Green energy sources (GESs) in electrical systems have become widely included in electrical networks for their significant subnational impacts on the economy and the environment. Regrettably, the power generating capacity of these GESs is significantly influenced by environmental circumstances, such as temperature and sun irradiation for PV systems and wind speed for WT systems. Environmental changes impact the power capacity of the electrical system since the maximum amount of power that can be generated will only be achieved by implementing control measures. This research aims to enhance the efficiency of a standalone renewable power system by optimizing the energy output from GESs using the MPPT technique, considering the impact of climate fluctuations. The standalone hybrid GESs combines PV and WT technologies with a BSS. For the PV and WT, a combinatorial MPPT technique is proposed to modify the control settings for this system optimally. This method is based on the SMC and FLC. The FLC plays a role in achieving the MPPT target by utilizing membership functions designed to handle uncertainties caused by shifting environmental conditions. Whereas for the BSS, an energy management plan is developed to optimize the performance of the HRES. The system under study outfitted with the MPPT technology, functions in tandem with a BSS. In case of failure or insufficient power generation from primary sources, a DC/DC bidirectional converter is employed to adjust the charging and discharging of the BSS, ensuring a stable supply of DC power. The system’s response in different climates is examined, and the proposed combination controller’s intended effectiveness is confirmed using MATLAB\\Simulink. The investigated structure can achieve approximately 99.213% efficacy with the support of the proposed SMC-FLC method, which is 19.874% greater than the widely used P&O method.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"74 5","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0309524x241254364","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Green energy sources (GESs) in electrical systems have become widely included in electrical networks for their significant subnational impacts on the economy and the environment. Regrettably, the power generating capacity of these GESs is significantly influenced by environmental circumstances, such as temperature and sun irradiation for PV systems and wind speed for WT systems. Environmental changes impact the power capacity of the electrical system since the maximum amount of power that can be generated will only be achieved by implementing control measures. This research aims to enhance the efficiency of a standalone renewable power system by optimizing the energy output from GESs using the MPPT technique, considering the impact of climate fluctuations. The standalone hybrid GESs combines PV and WT technologies with a BSS. For the PV and WT, a combinatorial MPPT technique is proposed to modify the control settings for this system optimally. This method is based on the SMC and FLC. The FLC plays a role in achieving the MPPT target by utilizing membership functions designed to handle uncertainties caused by shifting environmental conditions. Whereas for the BSS, an energy management plan is developed to optimize the performance of the HRES. The system under study outfitted with the MPPT technology, functions in tandem with a BSS. In case of failure or insufficient power generation from primary sources, a DC/DC bidirectional converter is employed to adjust the charging and discharging of the BSS, ensuring a stable supply of DC power. The system’s response in different climates is examined, and the proposed combination controller’s intended effectiveness is confirmed using MATLAB\Simulink. The investigated structure can achieve approximately 99.213% efficacy with the support of the proposed SMC-FLC method, which is 19.874% greater than the widely used P&O method.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.