Benjamin Le Roy, A. Lemonsu, Robert Schoetter, Tiago Machado
{"title":"Study of the future evolution of the urban climate of Paris by statistical-dynamical downscaling of the EURO-CORDEX ensemble","authors":"Benjamin Le Roy, A. Lemonsu, Robert Schoetter, Tiago Machado","doi":"10.1175/jamc-d-23-0145.1","DOIUrl":null,"url":null,"abstract":"\nHigh-resolution urban climate projections are needed for local decision-making on climate change adaptation. Regional climate models have resolutions that are too coarse to simulate the urban climate at such resolutions. A novel statistical-dynamical downscaling approach (SDD) is used here to downscale the EURO-CORDEX ensemble to a resolution of 1 km while adding the effect of the city of Paris (France) on air temperature. The downscaled atmospheric fields are then used to drive the Town Energy Balance urban canopy model to produce high-resolution temperature maps over the period 1970-2099, while maintaining the city’s land cover in its present state. The different steps of the SDD are evaluated for the summer season. The regional climate models simulate minimum(maximum) temperatures (TN/TX) that are too high(low). After correction and downscaling, the urban simulations inherit some of these biases, but give satisfactory results for summer urban heat islands (UHI), with average biases of −0.6 K at night and +0.3 K during the day. Changes in future summer temperatures are then studied for two greenhouse gas emission scenarios, RCP4.5 and RCP8.5. Outside the city, the simulations project average increases of 4.1 K and 4.8 K for TN and TX for RCP8.5. In the city, warming is lower, resulting in a decrease in UHIs of −0.19 K at night (from 2.1 K to 1.9 K) and −0.16 K during the day. The changes in UHIs are explained by higher rates of warming in rural temperatures due to lower summer precipitation and soil water content, and are partially offset by increased ground heat storage in the city.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"42 11","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jamc-d-23-0145.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
High-resolution urban climate projections are needed for local decision-making on climate change adaptation. Regional climate models have resolutions that are too coarse to simulate the urban climate at such resolutions. A novel statistical-dynamical downscaling approach (SDD) is used here to downscale the EURO-CORDEX ensemble to a resolution of 1 km while adding the effect of the city of Paris (France) on air temperature. The downscaled atmospheric fields are then used to drive the Town Energy Balance urban canopy model to produce high-resolution temperature maps over the period 1970-2099, while maintaining the city’s land cover in its present state. The different steps of the SDD are evaluated for the summer season. The regional climate models simulate minimum(maximum) temperatures (TN/TX) that are too high(low). After correction and downscaling, the urban simulations inherit some of these biases, but give satisfactory results for summer urban heat islands (UHI), with average biases of −0.6 K at night and +0.3 K during the day. Changes in future summer temperatures are then studied for two greenhouse gas emission scenarios, RCP4.5 and RCP8.5. Outside the city, the simulations project average increases of 4.1 K and 4.8 K for TN and TX for RCP8.5. In the city, warming is lower, resulting in a decrease in UHIs of −0.19 K at night (from 2.1 K to 1.9 K) and −0.16 K during the day. The changes in UHIs are explained by higher rates of warming in rural temperatures due to lower summer precipitation and soil water content, and are partially offset by increased ground heat storage in the city.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.