{"title":"Quaternion-Based Attitude Estimation of an Aircraft Model Using Computer Vision","authors":"Pavithra Kasula, J. Whidborne, Z. Rana","doi":"10.3390/s24123795","DOIUrl":null,"url":null,"abstract":"Investigating aircraft flight dynamics often requires dynamic wind tunnel testing. This paper proposes a non-contact, off-board instrumentation method using vision-based techniques. The method utilises a sequential process of Harris corner detection, Kanade–Lucas–Tomasi tracking, and quaternions to identify the Euler angles from a pair of cameras, one with a side view and the other with a top view. The method validation involves simulating a 3D CAD model for rotational motion with a single degree-of-freedom. The numerical analysis quantifies the results, while the proposed approach is analysed analytically. This approach results in a 45.41% enhancement in accuracy over an earlier direction cosine matrix method. Specifically, the quaternion-based method achieves root mean square errors of 0.0101 rad/s, 0.0361 rad/s, and 0.0036 rad/s for the dynamic measurements of roll rate, pitch rate, and yaw rate, respectively. Notably, the method exhibits a 98.08% accuracy for the pitch rate. These results highlight the performance of quaternion-based attitude estimation in dynamic wind tunnel testing. Furthermore, an extended Kalman filter is applied to integrate the generated on-board instrumentation data (inertial measurement unit, potentiometer gimbal) and the results of the proposed vision-based method. The extended Kalman filter state estimation achieves root mean square errors of 0.0090 rad/s, 0.0262 rad/s, and 0.0034 rad/s for the dynamic measurements of roll rate, pitch rate, and yaw rate, respectively. This method exhibits an improved accuracy of 98.61% for the estimation of pitch rate, indicating its higher efficiency over the standalone implementation of the direction cosine method for dynamic wind tunnel testing.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"50 12","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24123795","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Investigating aircraft flight dynamics often requires dynamic wind tunnel testing. This paper proposes a non-contact, off-board instrumentation method using vision-based techniques. The method utilises a sequential process of Harris corner detection, Kanade–Lucas–Tomasi tracking, and quaternions to identify the Euler angles from a pair of cameras, one with a side view and the other with a top view. The method validation involves simulating a 3D CAD model for rotational motion with a single degree-of-freedom. The numerical analysis quantifies the results, while the proposed approach is analysed analytically. This approach results in a 45.41% enhancement in accuracy over an earlier direction cosine matrix method. Specifically, the quaternion-based method achieves root mean square errors of 0.0101 rad/s, 0.0361 rad/s, and 0.0036 rad/s for the dynamic measurements of roll rate, pitch rate, and yaw rate, respectively. Notably, the method exhibits a 98.08% accuracy for the pitch rate. These results highlight the performance of quaternion-based attitude estimation in dynamic wind tunnel testing. Furthermore, an extended Kalman filter is applied to integrate the generated on-board instrumentation data (inertial measurement unit, potentiometer gimbal) and the results of the proposed vision-based method. The extended Kalman filter state estimation achieves root mean square errors of 0.0090 rad/s, 0.0262 rad/s, and 0.0034 rad/s for the dynamic measurements of roll rate, pitch rate, and yaw rate, respectively. This method exhibits an improved accuracy of 98.61% for the estimation of pitch rate, indicating its higher efficiency over the standalone implementation of the direction cosine method for dynamic wind tunnel testing.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico