A universal oral microbiome-based signature for periodontitis

IF 23.7 Q1 MICROBIOLOGY
iMeta Pub Date : 2024-06-12 DOI:10.1002/imt2.212
Mingyan Geng, Min Li, Yun Li, Jiaying Zhu, Chuqing Sun, Yan Wang, Wei-Hua Chen
{"title":"A universal oral microbiome-based signature for periodontitis","authors":"Mingyan Geng,&nbsp;Min Li,&nbsp;Yun Li,&nbsp;Jiaying Zhu,&nbsp;Chuqing Sun,&nbsp;Yan Wang,&nbsp;Wei-Hua Chen","doi":"10.1002/imt2.212","DOIUrl":null,"url":null,"abstract":"<p>We analyzed eight oral microbiota shotgun metagenomic sequencing cohorts from five countries and three continents, identifying 54 species biomarkers and 26 metabolic biomarkers consistently altered in health and disease states across three or more cohorts. Additionally, machine learning models based on taxonomic profiles achieved high accuracy in distinguishing periodontitis patients from controls (internal and external areas under the receiver operating characteristic curves of 0.86 and 0.85, respectively). These results support metagenome-based diagnosis of periodontitis and provide a foundation for further research and effective treatment strategies.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":73342,"journal":{"name":"iMeta","volume":"3 4","pages":""},"PeriodicalIF":23.7000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/imt2.212","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iMeta","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/imt2.212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We analyzed eight oral microbiota shotgun metagenomic sequencing cohorts from five countries and three continents, identifying 54 species biomarkers and 26 metabolic biomarkers consistently altered in health and disease states across three or more cohorts. Additionally, machine learning models based on taxonomic profiles achieved high accuracy in distinguishing periodontitis patients from controls (internal and external areas under the receiver operating characteristic curves of 0.86 and 0.85, respectively). These results support metagenome-based diagnosis of periodontitis and provide a foundation for further research and effective treatment strategies.

Abstract Image

基于口腔微生物组的牙周炎通用特征
我们分析了来自五个国家和三大洲的八个口腔微生物群猎枪元基因组测序队列,确定了 54 个物种生物标志物和 26 个代谢生物标志物,这些生物标志物在三个或更多队列的健康和疾病状态中发生了一致的改变。此外,基于分类学特征的机器学习模型在区分牙周炎患者和对照组方面具有很高的准确性(接收者操作特征曲线下的内部和外部区域分别为 0.86 和 0.85)。这些结果支持基于元基因组的牙周炎诊断,并为进一步的研究和有效的治疗策略奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信