A. Avramenko, I. Shevchuk, M. Kovetskaya, Y. Kovetska, A.S. Kobzar
{"title":"Application of discrete symmetry to natural convection in vertical porous microchannels","authors":"A. Avramenko, I. Shevchuk, M. Kovetskaya, Y. Kovetska, A.S. Kobzar","doi":"10.1515/jnet-2024-0006","DOIUrl":null,"url":null,"abstract":"Abstract This work focuses on the study of natural convection in a flat porous microchannel with asymmetric heating. The novelty of the work lies in the fact that for the first time the method of discrete symmetries was used to analyze the complete system of Navier–Stokes and energy equations in a two-dimensional approximation. Analytical solutions for velocity and temperature profiles have been derived based on symmetry analysis, taking into account boundary conditions such as slip and temperature jump at the channel walls. The effect of Grashof, Knudsen, Darcy, and Prandtl numbers on the flow characteristics in the microchannel and heat transfer coefficients was elucidated. At high Grashof numbers, an ascending flow near the hot wall and a descending flow near the cold wall arise. Increasing the Knudsen number leads to an increase in the velocity, temperature jump at the walls and a decrease in heat transfer coefficients. As the Darcy number increases, velocities amplify in both ascending and descending flows. The temperature jump at the hot wall grows up, while it remains unchanged at the cold wall. In the same time, the heat transfer coefficient at the hot wall decreases.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Equilibrium Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/jnet-2024-0006","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract This work focuses on the study of natural convection in a flat porous microchannel with asymmetric heating. The novelty of the work lies in the fact that for the first time the method of discrete symmetries was used to analyze the complete system of Navier–Stokes and energy equations in a two-dimensional approximation. Analytical solutions for velocity and temperature profiles have been derived based on symmetry analysis, taking into account boundary conditions such as slip and temperature jump at the channel walls. The effect of Grashof, Knudsen, Darcy, and Prandtl numbers on the flow characteristics in the microchannel and heat transfer coefficients was elucidated. At high Grashof numbers, an ascending flow near the hot wall and a descending flow near the cold wall arise. Increasing the Knudsen number leads to an increase in the velocity, temperature jump at the walls and a decrease in heat transfer coefficients. As the Darcy number increases, velocities amplify in both ascending and descending flows. The temperature jump at the hot wall grows up, while it remains unchanged at the cold wall. In the same time, the heat transfer coefficient at the hot wall decreases.
期刊介绍:
The Journal of Non-Equilibrium Thermodynamics serves as an international publication organ for new ideas, insights and results on non-equilibrium phenomena in science, engineering and related natural systems. The central aim of the journal is to provide a bridge between science and engineering and to promote scientific exchange on a) newly observed non-equilibrium phenomena, b) analytic or numeric modeling for their interpretation, c) vanguard methods to describe non-equilibrium phenomena.
Contributions should – among others – present novel approaches to analyzing, modeling and optimizing processes of engineering relevance such as transport processes of mass, momentum and energy, separation of fluid phases, reproduction of living cells, or energy conversion. The journal is particularly interested in contributions which add to the basic understanding of non-equilibrium phenomena in science and engineering, with systems of interest ranging from the macro- to the nano-level.
The Journal of Non-Equilibrium Thermodynamics has recently expanded its scope to place new emphasis on theoretical and experimental investigations of non-equilibrium phenomena in thermophysical, chemical, biochemical and abstract model systems of engineering relevance. We are therefore pleased to invite submissions which present newly observed non-equilibrium phenomena, analytic or fuzzy models for their interpretation, or new methods for their description.