{"title":"Waste heat recovery from exhaust gases using porous metal fins: a three-dimensional numerical study","authors":"Mohit Raje, A. Dhiman","doi":"10.1115/1.4065722","DOIUrl":null,"url":null,"abstract":"\n The objective of this study is to investigate the impact of different porous metal samples on the hydro-thermal characteristics of a single cylinder with porous fins using computational fluid dynamics. Commercially used porous samples with pore densities of 10, 20, and 40 PPI were used in this study for heat recovery from exhaust flue gas. The three-dimensional computational domain with porous aluminium fins attached to a tube over which high-temperature exhaust gas flows in a crossflow arrangement mimics a waste heat recovery system. Computations were performed at Reynolds number of 6000-9000, using the realisable κ-ϵ turbulence model. Three fin diameter to tube diameter ratios (Df/D = 2, 2.5, and 3) were considered. The local thermal non-equilibrium model is implemented for energy transfer, as it is more accurate for a high-temperature gradient scenario in a waste heat recovery system. The foam sample with the highest pore density was observed to have the highest pressure drop due to low permeability. A maximum heat transfer and Nusselt number were achieved for a 40 PPI foam sample due to a reduced flow rate inside the porous zone. The overall performance of metal foam samples at varying fin diameters was evaluated based on the area goodness factor (j/f) and a heat transfer coefficient ratio to pumping power per unit heat transfer surface (Z/E). Analysis of these two parameters suggests using 20 PPI foam at Df/D = 2.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"120 46","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4065722","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this study is to investigate the impact of different porous metal samples on the hydro-thermal characteristics of a single cylinder with porous fins using computational fluid dynamics. Commercially used porous samples with pore densities of 10, 20, and 40 PPI were used in this study for heat recovery from exhaust flue gas. The three-dimensional computational domain with porous aluminium fins attached to a tube over which high-temperature exhaust gas flows in a crossflow arrangement mimics a waste heat recovery system. Computations were performed at Reynolds number of 6000-9000, using the realisable κ-ϵ turbulence model. Three fin diameter to tube diameter ratios (Df/D = 2, 2.5, and 3) were considered. The local thermal non-equilibrium model is implemented for energy transfer, as it is more accurate for a high-temperature gradient scenario in a waste heat recovery system. The foam sample with the highest pore density was observed to have the highest pressure drop due to low permeability. A maximum heat transfer and Nusselt number were achieved for a 40 PPI foam sample due to a reduced flow rate inside the porous zone. The overall performance of metal foam samples at varying fin diameters was evaluated based on the area goodness factor (j/f) and a heat transfer coefficient ratio to pumping power per unit heat transfer surface (Z/E). Analysis of these two parameters suggests using 20 PPI foam at Df/D = 2.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.