{"title":"Addressing multi-molecule field-coupled nanocomputing for neural networks with SCERPA","authors":"Federico Ravera, Giuliana Beretta, Yuri Ardesi, Mariagrazia Graziano, Gianluca Piccinini","doi":"10.1007/s10825-024-02189-y","DOIUrl":null,"url":null,"abstract":"<div><p>The molecular field-coupled nanocompunting (molFCN) technology encodes the information in the charge distribution of electrostatically coupled molecules, making it an exciting solution for future beyond-CMOS low-power electronics. Recent literature has shown that multi-molecule molFCN enables the design of devices with tailored unconventional characteristics, such as majority voters working as artificial neurons. This work presents a multi-molecule molFCN neuron model based on the weighted-inputs formulation to estimate molFCN neurons behavior. Then, the introduced model is used to design each neuron of molFCN circuits working as neural networks. In particular, we propose a molFCN neural network operating as an input pattern classifier. The results show the model aptitude in predicting the logic output values for individual neurons and, consequently, entire networks. The model accuracy has been evaluated by comparing the results from the neuron mathematical model with those obtained from the circuit-level simulations conducted with the SCERPA tool. Overall, this study highlights the strategic use of diverse molecules in molFCN layouts, customizing circuit operations, and expanding design possibilities for specific molFCN device functioning.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"23 4","pages":"910 - 919"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10825-024-02189-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02189-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The molecular field-coupled nanocompunting (molFCN) technology encodes the information in the charge distribution of electrostatically coupled molecules, making it an exciting solution for future beyond-CMOS low-power electronics. Recent literature has shown that multi-molecule molFCN enables the design of devices with tailored unconventional characteristics, such as majority voters working as artificial neurons. This work presents a multi-molecule molFCN neuron model based on the weighted-inputs formulation to estimate molFCN neurons behavior. Then, the introduced model is used to design each neuron of molFCN circuits working as neural networks. In particular, we propose a molFCN neural network operating as an input pattern classifier. The results show the model aptitude in predicting the logic output values for individual neurons and, consequently, entire networks. The model accuracy has been evaluated by comparing the results from the neuron mathematical model with those obtained from the circuit-level simulations conducted with the SCERPA tool. Overall, this study highlights the strategic use of diverse molecules in molFCN layouts, customizing circuit operations, and expanding design possibilities for specific molFCN device functioning.
期刊介绍:
he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered.
In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.