Tao Ni, Jin Zhang, Mirco Zaccariotto, Ugo Galvanetto, Bernhard A. Schrefler
{"title":"Matrix-based implementation and GPU acceleration of hybrid FEM and peridynamic model for hydro-mechanical coupled problems","authors":"Tao Ni, Jin Zhang, Mirco Zaccariotto, Ugo Galvanetto, Bernhard A. Schrefler","doi":"10.1002/nme.7504","DOIUrl":null,"url":null,"abstract":"<p>The hybrid finite element-peridynamic (FEM-PD) models have been evidenced for their exceptional ability to address hydro-mechanical coupled problems involving cracks. Nevertheless, the non-local characteristics of the PD equations and the required inversion operations when solving fluid equations result in prohibitively high computational costs. In this paper, a fast explicit solution scheme for FEM-PD models based on matrix operation is introduced, where the graphics processing units (GPUs) are used to accelerate the computation. An in-house software is developed in MATLAB in both CPU and GPU versions. We first solve a problem related to pore pressure distribution in a single crack, demonstrating the accuracy of the proposed method by a comparison of FEM-PD solutions with those of PD-only models and analytical solutions. Subsequently, several examples are solved, including a one-dimensional dynamic consolidation problem and the fluid-driven hydraulic fracture propagation problems in both 2D and 3D cases, to comprehensively validate the effectiveness of the proposed methods in simulating deformation and fracture in saturated porous media under the influence of hydro-mechanical coupling. In the presented numerical results, some typical strong dynamic phenomena, such as stepwise crack advancement, crack branching, and pressure oscillations, are observed. In addition, we compare the wall times of all the cases executed on both the GPU and CPU, highlighting the substantial acceleration performance of the GPU, particularly when tackling problems with a significant computational workload.</p>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.7504","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The hybrid finite element-peridynamic (FEM-PD) models have been evidenced for their exceptional ability to address hydro-mechanical coupled problems involving cracks. Nevertheless, the non-local characteristics of the PD equations and the required inversion operations when solving fluid equations result in prohibitively high computational costs. In this paper, a fast explicit solution scheme for FEM-PD models based on matrix operation is introduced, where the graphics processing units (GPUs) are used to accelerate the computation. An in-house software is developed in MATLAB in both CPU and GPU versions. We first solve a problem related to pore pressure distribution in a single crack, demonstrating the accuracy of the proposed method by a comparison of FEM-PD solutions with those of PD-only models and analytical solutions. Subsequently, several examples are solved, including a one-dimensional dynamic consolidation problem and the fluid-driven hydraulic fracture propagation problems in both 2D and 3D cases, to comprehensively validate the effectiveness of the proposed methods in simulating deformation and fracture in saturated porous media under the influence of hydro-mechanical coupling. In the presented numerical results, some typical strong dynamic phenomena, such as stepwise crack advancement, crack branching, and pressure oscillations, are observed. In addition, we compare the wall times of all the cases executed on both the GPU and CPU, highlighting the substantial acceleration performance of the GPU, particularly when tackling problems with a significant computational workload.
期刊介绍:
The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems.
The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.