C. Tozer, J. Risbey, M. Pook, D. Monselesan, Damien Irving, Nandini Ramesh, Doug Richardson
{"title":"A Tale of Two Novembers: Confounding influences on La Niña’s relationship with rainfall in Australia","authors":"C. Tozer, J. Risbey, M. Pook, D. Monselesan, Damien Irving, Nandini Ramesh, Doug Richardson","doi":"10.1175/mwr-d-23-0112.1","DOIUrl":null,"url":null,"abstract":"\nDespite common background La Niña conditions, Australia was very dry in November 2020 and wet in November 2021. This paper aims to provide an explanation for this difference. Large-scale drivers of Australian rainfall, including the El Niño Southern Oscillation, Indian Ocean Dipole, Southern Annular Mode and Madden Julian Oscillation, were examined but did not provide obvious clues for the differences. We found that the absence (in 2020) or presence (in 2021) of an enhanced thermal wind and subtropical jet over the Australian continent contributed to the rainfall anomalies. In general, La Niña sets up warm sea surface temperatures around northern Australia, which enhances the meridional temperature gradient over the continent, and hence thermal wind and subtropical jet. In November 2021 these warm sea surface temperatures, coupled with a persistent mid-latitude trough, which advected cold air over the Australian continent, led to an enhanced meridional temperature gradient and subtropical jet over Australia. The enhanced jet provided favourable conditions for the development of rain-bearing weather systems across Australia. In 2020 the continent was warm, displacing the latitude of maximum meridional temperature gradient south of the continent, resulting in fewer instances of the subtropical jet over Australia, and little development of weather systems over the continent. We highlight that although La Niña tilts the odds to wetter conditions for Australia, in any given month, variability in temperatures over the continent can contribute to subtropical jet variability and resulting rainfall in ways which confound the normal expectation from La Niña.","PeriodicalId":18824,"journal":{"name":"Monthly Weather Review","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monthly Weather Review","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/mwr-d-23-0112.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Despite common background La Niña conditions, Australia was very dry in November 2020 and wet in November 2021. This paper aims to provide an explanation for this difference. Large-scale drivers of Australian rainfall, including the El Niño Southern Oscillation, Indian Ocean Dipole, Southern Annular Mode and Madden Julian Oscillation, were examined but did not provide obvious clues for the differences. We found that the absence (in 2020) or presence (in 2021) of an enhanced thermal wind and subtropical jet over the Australian continent contributed to the rainfall anomalies. In general, La Niña sets up warm sea surface temperatures around northern Australia, which enhances the meridional temperature gradient over the continent, and hence thermal wind and subtropical jet. In November 2021 these warm sea surface temperatures, coupled with a persistent mid-latitude trough, which advected cold air over the Australian continent, led to an enhanced meridional temperature gradient and subtropical jet over Australia. The enhanced jet provided favourable conditions for the development of rain-bearing weather systems across Australia. In 2020 the continent was warm, displacing the latitude of maximum meridional temperature gradient south of the continent, resulting in fewer instances of the subtropical jet over Australia, and little development of weather systems over the continent. We highlight that although La Niña tilts the odds to wetter conditions for Australia, in any given month, variability in temperatures over the continent can contribute to subtropical jet variability and resulting rainfall in ways which confound the normal expectation from La Niña.
期刊介绍:
Monthly Weather Review (MWR) (ISSN: 0027-0644; eISSN: 1520-0493) publishes research relevant to the analysis and prediction of observed atmospheric circulations and physics, including technique development, data assimilation, model validation, and relevant case studies. This research includes numerical and data assimilation techniques that apply to the atmosphere and/or ocean environments. MWR also addresses phenomena having seasonal and subseasonal time scales.