Kang Hyeon Kim, Jeong Hyeon Kim, Yu Jin Ko, Han Eol Lee
{"title":"Body-attachable multifunctional electronic skins for bio-signal monitoring and therapeutic applications","authors":"Kang Hyeon Kim, Jeong Hyeon Kim, Yu Jin Ko, Han Eol Lee","doi":"10.20517/ss.2024.09","DOIUrl":null,"url":null,"abstract":"The lack of infrastructure and accessibility in medical treatments has been considered as a global chronic issue since the concept of treatment and prevention was presented. After the COVID-19 pandemic, the medical reaction capability for epidemic outbreak/spread has been spotlighted as a critical issue to the fore worldwide. To reduce the burden on the medical system from the simultaneous disease emergence, the personalized wearable electronic systems have arisen as the next-generation biomedical monitoring/treating equipment for infectious diseases at the initial stage. In particular, electronic skin (e-skin) with its potential for multifunctional extendibility has been enabled to be applied to next-generation long-term healthcare devices with real-time biosignal sensing. Here, we introduce the recent enhancements of various e-skin systems for healthcare applications in terms of material types and device structures, including sensor components, biological signal sensing mechanisms, applicable technological advancements, and medical utilization.","PeriodicalId":74837,"journal":{"name":"Soft science","volume":"139 28","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/ss.2024.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The lack of infrastructure and accessibility in medical treatments has been considered as a global chronic issue since the concept of treatment and prevention was presented. After the COVID-19 pandemic, the medical reaction capability for epidemic outbreak/spread has been spotlighted as a critical issue to the fore worldwide. To reduce the burden on the medical system from the simultaneous disease emergence, the personalized wearable electronic systems have arisen as the next-generation biomedical monitoring/treating equipment for infectious diseases at the initial stage. In particular, electronic skin (e-skin) with its potential for multifunctional extendibility has been enabled to be applied to next-generation long-term healthcare devices with real-time biosignal sensing. Here, we introduce the recent enhancements of various e-skin systems for healthcare applications in terms of material types and device structures, including sensor components, biological signal sensing mechanisms, applicable technological advancements, and medical utilization.