A Quantum Technology for Reinforcement Learning on Channel Assignment

IF 4.4 Q1 OPTICS
Zengjing Chen, Lu Wang, Chengzhi Xing
{"title":"A Quantum Technology for Reinforcement Learning on Channel Assignment","authors":"Zengjing Chen,&nbsp;Lu Wang,&nbsp;Chengzhi Xing","doi":"10.1002/qute.202300141","DOIUrl":null,"url":null,"abstract":"<p>Prospective application of quantum technologies for reinforcement learning (RL) is an exciting surge in quantum fields. Quantum random number generators (QRNGs) produce high-frequency random bits, with advantages of true randomness and device independence over pseudo-random numbers. This work explores a new approach, called the quantum random numbers for multi-armed bandit (QRN-MAB) algorithm, for multi-user access in wireless communication system upon random bits. The primary objective of the algorithm is to attain a stable assignment state without further exchange. QRN-MAB utilizes random bits to learn channel features and conducts concurrent exchange to attain stability. This work finds that the intrinsic randomness property used in QRN-MAB enables arrangement to maintain high accuracy and outperforms other classical algorithms. Additionally, the algorithm exhibits strong adaptability when the environment changes over time and quantum random numbers are advantageous over other pseudo-random methods in achieving the target. This work provides an effective way for quantum technologies applications in RL and unfolds a promising avenue to stabilize assignment among multiple users.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202300141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Prospective application of quantum technologies for reinforcement learning (RL) is an exciting surge in quantum fields. Quantum random number generators (QRNGs) produce high-frequency random bits, with advantages of true randomness and device independence over pseudo-random numbers. This work explores a new approach, called the quantum random numbers for multi-armed bandit (QRN-MAB) algorithm, for multi-user access in wireless communication system upon random bits. The primary objective of the algorithm is to attain a stable assignment state without further exchange. QRN-MAB utilizes random bits to learn channel features and conducts concurrent exchange to attain stability. This work finds that the intrinsic randomness property used in QRN-MAB enables arrangement to maintain high accuracy and outperforms other classical algorithms. Additionally, the algorithm exhibits strong adaptability when the environment changes over time and quantum random numbers are advantageous over other pseudo-random methods in achieving the target. This work provides an effective way for quantum technologies applications in RL and unfolds a promising avenue to stabilize assignment among multiple users.

Abstract Image

信道分配强化学习的量子技术
量子技术在强化学习(RL)中的应用前景是量子领域一个令人兴奋的浪潮。量子随机数发生器(QRNG)能产生高频随机比特,与伪随机数相比,它具有真正的随机性和设备独立性等优点。这项研究探索了一种新方法,称为多臂匪量子随机数(QRN-MAB)算法,用于无线通信系统中多用户接入的随机比特。该算法的主要目标是获得稳定的分配状态,而无需进一步交换。QRN-MAB 利用随机比特来学习信道特征,并同时进行交换以达到稳定。这项研究发现,QRN-MAB 中使用的固有随机性特性能使排列保持高精确度,并优于其他经典算法。此外,该算法在环境随时间变化时表现出很强的适应性,量子随机数在实现目标方面比其他伪随机方法更具优势。这项工作为量子技术在 RL 中的应用提供了一种有效方法,并为稳定多用户之间的分配开辟了一条前景广阔的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信