Design of Ultra-Compact Adiabatic Mode Circulator based on Adiabatic Mode Evolutions

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Tu-Lu Liang, Wei Shao, Mei Yu, Lingyan Zhang, Ziye Xiao, Lin Peng, Jin Shi
{"title":"Design of Ultra-Compact Adiabatic Mode Circulator based on Adiabatic Mode Evolutions","authors":"Tu-Lu Liang,&nbsp;Wei Shao,&nbsp;Mei Yu,&nbsp;Lingyan Zhang,&nbsp;Ziye Xiao,&nbsp;Lin Peng,&nbsp;Jin Shi","doi":"10.1007/s12633-024-03062-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, an adiabatic mode circulator based on the adiabatic mode evolution mechanism with thickness of 220 nm for the cyclic transfer of TE<sub>1</sub> modes is presented, which has two adiabatic mode converters suitable for mode conversion between TE<sub>1</sub> and TM<sub>0</sub> modes, and four adiabatic taper waveguides suitable for the transfer of either TE<sub>1</sub> or TM<sub>0</sub> modes. Due to the symmetry of the structure, only the first half needs to be considered: the first adiabatic taper waveguide evolves the TE<sub>1</sub> mode at width <i>W</i><sub>1</sub> = 1.5 μm to the TE<sub>1</sub> mode at width <i>W</i><sub>2</sub> = 0.7 μm. The first adiabatic mode converter evolves the TE<sub>1</sub> mode at width <i>W</i><sub>2</sub> = 0.7 μm to the TM<sub>0</sub> mode at width <i>W</i><sub>3</sub> = 0.62 μm. The second adiabatic taper waveguide evolves the TM<sub>0</sub> mode at width <i>W</i><sub>3</sub> = 0.7 μm to the TM<sub>0</sub> mode at width <i>W</i><sub>4</sub> = 0.4 μm. The design results show that the adiabatic mode circulator designed in this study can achieve the same power transfer efficiency with an ultra-compact device size compared with other design methods (such as the design approach in Ref. (Dai et al. Opt Exp 20(12):13425-13439, 2012). The device length of the proposed adiabatic mode circulator has been reduced by a factor of 80 compared to the design approach in Ref. (Dai et al. Opt Exp 20(12):13425-13439, 2012). As a result, the device size of the proposed adiabatic mode circulator is drastically reduced, enabling the design of ultra-compact adiabatic mode circulators.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12633-024-03062-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, an adiabatic mode circulator based on the adiabatic mode evolution mechanism with thickness of 220 nm for the cyclic transfer of TE1 modes is presented, which has two adiabatic mode converters suitable for mode conversion between TE1 and TM0 modes, and four adiabatic taper waveguides suitable for the transfer of either TE1 or TM0 modes. Due to the symmetry of the structure, only the first half needs to be considered: the first adiabatic taper waveguide evolves the TE1 mode at width W1 = 1.5 μm to the TE1 mode at width W2 = 0.7 μm. The first adiabatic mode converter evolves the TE1 mode at width W2 = 0.7 μm to the TM0 mode at width W3 = 0.62 μm. The second adiabatic taper waveguide evolves the TM0 mode at width W3 = 0.7 μm to the TM0 mode at width W4 = 0.4 μm. The design results show that the adiabatic mode circulator designed in this study can achieve the same power transfer efficiency with an ultra-compact device size compared with other design methods (such as the design approach in Ref. (Dai et al. Opt Exp 20(12):13425-13439, 2012). The device length of the proposed adiabatic mode circulator has been reduced by a factor of 80 compared to the design approach in Ref. (Dai et al. Opt Exp 20(12):13425-13439, 2012). As a result, the device size of the proposed adiabatic mode circulator is drastically reduced, enabling the design of ultra-compact adiabatic mode circulators.

基于绝热模式演变的超小型绝热模式循环器设计
本研究介绍了一种基于绝热模式演化机制的绝热模式循环器,其厚度为 220 nm,用于 TE1 模式的循环传输,其中有两个绝热模式转换器适用于 TE1 和 TM0 模式之间的模式转换,四个绝热锥形波导适用于 TE1 或 TM0 模式的传输。由于结构的对称性,只需考虑前半部分:第一个绝热锥形波导将宽度 W1 = 1.5 μm 的 TE1 模式演化为宽度 W2 = 0.7 μm 的 TE1 模式。第一个绝热模式转换器将宽度 W2 = 0.7 μm 的 TE1 模式演变为宽度 W3 = 0.62 μm 的 TM0 模式。第二个绝热锥形波导将宽度 W3 = 0.7 μm 处的 TM0 模式演化为宽度 W4 = 0.4 μm 处的 TM0 模式。设计结果表明,与其他设计方法(如参考文献中的设计方法)相比,本研究设计的绝热模式环行器能以超紧凑的器件尺寸实现相同的功率传输效率(Dai et al. Opt Exp 20(12):13425-13439, 2012)。与参考文献(Dai et al. Opt Exp 20(12):13425-13439, 2012)中的设计方法相比,所提出的绝热模式环行器的器件长度减少了 80 倍。因此,所提出的绝热模式环行器的器件尺寸大大缩小,从而实现了超紧凑绝热模式环行器的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信