Frequency-Dependent Pre-Sowing Magneto-Priming of Anise Seeds Affecting Their Productivity

IF 1.4 Q3 AGRONOMY
Haitham S. Mohammed, Aml Shahin, Alia Amer
{"title":"Frequency-Dependent Pre-Sowing Magneto-Priming of Anise Seeds Affecting Their Productivity","authors":"Haitham S. Mohammed,&nbsp;Aml Shahin,&nbsp;Alia Amer","doi":"10.1007/s40003-024-00733-7","DOIUrl":null,"url":null,"abstract":"<div><p>Aiming to increase crop yield, it is crucial to establish a favorable plant stand using seeds that exhibit a high germination ratio and vigor. Various pre-sowing treatments are employed to achieve this objective. One such approach involves subjecting seeds to a low-to-medium level magnetic field. This study investigates the impact of frequency-dependent pre-sowing magneto-priming treatment on anise seed (<i>Pimpinella anisum L</i>) productivity. During the seasons of 2021/2022 and 2022/2023, anise seeds were exposed to DC, 5 Hz, and 10 Hz magnetic field treatments for different durations (20, 40, 60, and 80 min) prior to sowing. The growth parameters of the plants, fruit yield, and essential oil content were evaluated for both the magnetically treated and untreated seeds. The results indicate that the productivity of anise seeds is influenced by the frequency and duration of the magnetic field treatment. Among the different treatments, seeds treated with a 10 Hz frequency for 40 min exhibited the highest vegetative growth parameters, fruit yield, and oil yield compared to the untreated seeds. By adopting this method, there is great potential to improve crop yields and contribute to sustainable agricultural practices.</p></div>","PeriodicalId":7553,"journal":{"name":"Agricultural Research","volume":"13 4","pages":"692 - 703"},"PeriodicalIF":1.4000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40003-024-00733-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming to increase crop yield, it is crucial to establish a favorable plant stand using seeds that exhibit a high germination ratio and vigor. Various pre-sowing treatments are employed to achieve this objective. One such approach involves subjecting seeds to a low-to-medium level magnetic field. This study investigates the impact of frequency-dependent pre-sowing magneto-priming treatment on anise seed (Pimpinella anisum L) productivity. During the seasons of 2021/2022 and 2022/2023, anise seeds were exposed to DC, 5 Hz, and 10 Hz magnetic field treatments for different durations (20, 40, 60, and 80 min) prior to sowing. The growth parameters of the plants, fruit yield, and essential oil content were evaluated for both the magnetically treated and untreated seeds. The results indicate that the productivity of anise seeds is influenced by the frequency and duration of the magnetic field treatment. Among the different treatments, seeds treated with a 10 Hz frequency for 40 min exhibited the highest vegetative growth parameters, fruit yield, and oil yield compared to the untreated seeds. By adopting this method, there is great potential to improve crop yields and contribute to sustainable agricultural practices.

八角茴香种子播种前磁性引诱对其产量的影响与频率有关
为了提高作物产量,使用发芽率高、活力强的种子建立良好的植株至关重要。为实现这一目标,我们采用了各种播前处理方法。其中一种方法是将种子置于中低水平的磁场中。本研究调查了播种前磁力催芽处理对八角种子(Pimpinella anisum L)生产率的影响。在 2021/2022 年和 2022/2023 年两个季节,八角种子在播种前分别暴露于直流、5 赫兹和 10 赫兹的磁场中,持续时间分别为 20、40、60 和 80 分钟。对经过磁场处理和未经处理的种子的植株生长参数、果实产量和精油含量进行了评估。结果表明,八角种子的产量受磁场处理频率和持续时间的影响。在不同的处理方法中,与未处理的种子相比,用 10 赫兹的频率处理 40 分钟的种子表现出最高的无性生长参数、果实产量和油产量。通过采用这种方法,提高作物产量和促进可持续农业实践的潜力巨大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
24
期刊介绍: The main objective of this initiative is to promote agricultural research and development. The journal will publish high quality original research papers and critical reviews on emerging fields and concepts for providing future directions. The publications will include both applied and basic research covering the following disciplines of agricultural sciences: Genetic resources, genetics and breeding, biotechnology, physiology, biochemistry, management of biotic and abiotic stresses, and nutrition of field crops, horticultural crops, livestock and fishes; agricultural meteorology, environmental sciences, forestry and agro forestry, agronomy, soils and soil management, microbiology, water management, agricultural engineering and technology, agricultural policy, agricultural economics, food nutrition, agricultural statistics, and extension research; impact of climate change and the emerging technologies on agriculture, and the role of agricultural research and innovation for development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信