The assembly of Pangea: geodynamic conundrums revisited

IF 2.6 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY
J. B. Murphy, R. Nance, Ross N. Mitchell
{"title":"The assembly of Pangea: geodynamic conundrums revisited","authors":"J. B. Murphy, R. Nance, Ross N. Mitchell","doi":"10.1144/jgs2024-006","DOIUrl":null,"url":null,"abstract":"Geodynamic models for Pangea assembly require knowledge of Paleozoic mantle convection patterns. Application of basic geodynamic principles to Neoproterozoic–Paleozoic plate reconstructions yields Pangea in the incorrect configuration (predicting that Pangea should have formed by consumption of the exterior paleo-Pacific Ocean instead of Iapetus, Rheic, and Proto-Tethys oceans).\n We contend that the mantle legacy of Late Neoproterozoic–Cambrian amalgamation of Gondwana must be factored into models for Pangea amalgamation. Proxy data suggest that the mantle downwelling driving Pan-African collisions and Gondwana assembly evolved into a mantle upwelling as evidenced by the interplay between subduction-related and plume-related tectonics around the periphery of Gondwana.\n Orthoversion theory, whereby a supercontinent assembles ∼90° away from the centre of the previous supercontinent, suggests that Gondwana amalgamated above an intense downwelling along a meridional subduction girdle that bisected two antipodal sub-equatorial upwellings. Several processes beneath and around Gondwana reduced the intensity of the original downwelling, as evidenced by plume-related activity along its margins, initiation of subduction zone roll-back, and the export of terranes from Gondwana that collided with the margin of Laurentia–Baltica. As upwelling beneath it intensified, Gondwana migrated along the girdle until it collided with Laurentia–Baltica, resulting in the final assembly of Pangea.","PeriodicalId":17320,"journal":{"name":"Journal of the Geological Society","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Geological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/jgs2024-006","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Geodynamic models for Pangea assembly require knowledge of Paleozoic mantle convection patterns. Application of basic geodynamic principles to Neoproterozoic–Paleozoic plate reconstructions yields Pangea in the incorrect configuration (predicting that Pangea should have formed by consumption of the exterior paleo-Pacific Ocean instead of Iapetus, Rheic, and Proto-Tethys oceans). We contend that the mantle legacy of Late Neoproterozoic–Cambrian amalgamation of Gondwana must be factored into models for Pangea amalgamation. Proxy data suggest that the mantle downwelling driving Pan-African collisions and Gondwana assembly evolved into a mantle upwelling as evidenced by the interplay between subduction-related and plume-related tectonics around the periphery of Gondwana. Orthoversion theory, whereby a supercontinent assembles ∼90° away from the centre of the previous supercontinent, suggests that Gondwana amalgamated above an intense downwelling along a meridional subduction girdle that bisected two antipodal sub-equatorial upwellings. Several processes beneath and around Gondwana reduced the intensity of the original downwelling, as evidenced by plume-related activity along its margins, initiation of subduction zone roll-back, and the export of terranes from Gondwana that collided with the margin of Laurentia–Baltica. As upwelling beneath it intensified, Gondwana migrated along the girdle until it collided with Laurentia–Baltica, resulting in the final assembly of Pangea.
泛大陆的形成:地球动力学难题再探讨
潘加大陆组装的地球动力学模型需要了解古生代地幔对流模式。将基本的地球动力学原理应用于新近新生代-古生代板块的重构,得出的潘加亚构造是错误的(预测潘加亚应该是由外部的古太平洋而不是伊阿佩托斯洋、莱茵洋和原特提斯洋消耗而形成的)。我们认为,新近新生代晚期-寒武纪冈瓦纳大混杂的地幔遗留问题必须考虑到潘加拉大混杂的模型中。代用数据表明,推动泛非碰撞和冈瓦纳拼合的地幔下涌演变成了地幔上涌,冈瓦纳周边与俯冲有关的构造和与羽状构造之间的相互作用证明了这一点。正位反转理论认为,冈瓦纳大陆是在沿经向俯冲带的强烈下沉气流之上合并的,该俯冲带将两个反赤道的次赤道上升流一分为二。冈瓦纳下面和周围的几个过程降低了原始下沉气流的强度,其边缘与羽流有关的活动、俯冲带后退的开始以及与劳伦提亚-波罗的海边缘相撞的冈瓦纳陆块的输出就是证明。随着冈瓦纳下面的上升流加剧,冈瓦纳沿着腰带迁移,直到与劳伦西亚-波罗的海相撞,最终形成泛大陆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the Geological Society
Journal of the Geological Society 地学-地球科学综合
CiteScore
6.00
自引率
3.70%
发文量
68
审稿时长
6-12 weeks
期刊介绍: Journal of the Geological Society (JGS) is owned and published by the Geological Society of London. JGS publishes topical, high-quality recent research across the full range of Earth Sciences. Papers are interdisciplinary in nature and emphasize the development of an understanding of fundamental geological processes. Broad interest articles that refer to regional studies, but which extend beyond their geographical context are also welcomed. Each year JGS presents the ‘JGS Early Career Award'' for papers published in the journal, which rewards the writing of well-written, exciting papers from early career geologists. The journal publishes research and invited review articles, discussion papers and thematic sets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信