{"title":"The assembly of Pangea: geodynamic conundrums revisited","authors":"J. B. Murphy, R. Nance, Ross N. Mitchell","doi":"10.1144/jgs2024-006","DOIUrl":null,"url":null,"abstract":"Geodynamic models for Pangea assembly require knowledge of Paleozoic mantle convection patterns. Application of basic geodynamic principles to Neoproterozoic–Paleozoic plate reconstructions yields Pangea in the incorrect configuration (predicting that Pangea should have formed by consumption of the exterior paleo-Pacific Ocean instead of Iapetus, Rheic, and Proto-Tethys oceans).\n We contend that the mantle legacy of Late Neoproterozoic–Cambrian amalgamation of Gondwana must be factored into models for Pangea amalgamation. Proxy data suggest that the mantle downwelling driving Pan-African collisions and Gondwana assembly evolved into a mantle upwelling as evidenced by the interplay between subduction-related and plume-related tectonics around the periphery of Gondwana.\n Orthoversion theory, whereby a supercontinent assembles ∼90° away from the centre of the previous supercontinent, suggests that Gondwana amalgamated above an intense downwelling along a meridional subduction girdle that bisected two antipodal sub-equatorial upwellings. Several processes beneath and around Gondwana reduced the intensity of the original downwelling, as evidenced by plume-related activity along its margins, initiation of subduction zone roll-back, and the export of terranes from Gondwana that collided with the margin of Laurentia–Baltica. As upwelling beneath it intensified, Gondwana migrated along the girdle until it collided with Laurentia–Baltica, resulting in the final assembly of Pangea.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"35 10","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/jgs2024-006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Geodynamic models for Pangea assembly require knowledge of Paleozoic mantle convection patterns. Application of basic geodynamic principles to Neoproterozoic–Paleozoic plate reconstructions yields Pangea in the incorrect configuration (predicting that Pangea should have formed by consumption of the exterior paleo-Pacific Ocean instead of Iapetus, Rheic, and Proto-Tethys oceans).
We contend that the mantle legacy of Late Neoproterozoic–Cambrian amalgamation of Gondwana must be factored into models for Pangea amalgamation. Proxy data suggest that the mantle downwelling driving Pan-African collisions and Gondwana assembly evolved into a mantle upwelling as evidenced by the interplay between subduction-related and plume-related tectonics around the periphery of Gondwana.
Orthoversion theory, whereby a supercontinent assembles ∼90° away from the centre of the previous supercontinent, suggests that Gondwana amalgamated above an intense downwelling along a meridional subduction girdle that bisected two antipodal sub-equatorial upwellings. Several processes beneath and around Gondwana reduced the intensity of the original downwelling, as evidenced by plume-related activity along its margins, initiation of subduction zone roll-back, and the export of terranes from Gondwana that collided with the margin of Laurentia–Baltica. As upwelling beneath it intensified, Gondwana migrated along the girdle until it collided with Laurentia–Baltica, resulting in the final assembly of Pangea.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.