Fragility curves of sequential earthquakes for RC buildings in Japan

IF 3.8 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL
Mahnoosh Biglari, Yoshiki Ikeda, Hiroshi Kawase
{"title":"Fragility curves of sequential earthquakes for RC buildings in Japan","authors":"Mahnoosh Biglari,&nbsp;Yoshiki Ikeda,&nbsp;Hiroshi Kawase","doi":"10.1007/s10518-024-01949-2","DOIUrl":null,"url":null,"abstract":"<div><p>Structures in earthquake-prone areas may suffer from accumulative damages caused by sequential shocks, including the mainshock and aftershock of an earthquake or several strong motions throughout their service lifespan. Sequential shocks lead to a decrease in the capacity of structures. Nevertheless, seismic fragility curves and their applications do not often consider the sequential effect. This study investigates the impact of sequential seismic events on seismic fragility curves of 3-, 6-, and 9-story reinforced concrete buildings constructed before and after 1982 in Japan. The research proposes analytical fragility curves based on dynamic nonlinear multi-degree-of-freedom analyses under the influence of single shock and sequential shock of recorded motions of six destructive earthquakes in Japan. The results demonstrate that the seismic sequence increases the probability of damage ratio. This increase in the fragility curve follows the Gaussian function. The study presents a regression model that can be used for other seismic areas to estimate the effect of seismic sequences on single shock seismic fragility curves.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"22 9","pages":"4657 - 4676"},"PeriodicalIF":3.8000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10518-024-01949-2","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Structures in earthquake-prone areas may suffer from accumulative damages caused by sequential shocks, including the mainshock and aftershock of an earthquake or several strong motions throughout their service lifespan. Sequential shocks lead to a decrease in the capacity of structures. Nevertheless, seismic fragility curves and their applications do not often consider the sequential effect. This study investigates the impact of sequential seismic events on seismic fragility curves of 3-, 6-, and 9-story reinforced concrete buildings constructed before and after 1982 in Japan. The research proposes analytical fragility curves based on dynamic nonlinear multi-degree-of-freedom analyses under the influence of single shock and sequential shock of recorded motions of six destructive earthquakes in Japan. The results demonstrate that the seismic sequence increases the probability of damage ratio. This increase in the fragility curve follows the Gaussian function. The study presents a regression model that can be used for other seismic areas to estimate the effect of seismic sequences on single shock seismic fragility curves.

Abstract Image

Abstract Image

日本 RC 建筑连续地震的脆性曲线
地震多发区的结构可能会在其整个使用寿命期间受到连续冲击(包括地震的主震和余震或多次强震)造成的累积破坏。连续冲击会导致结构的承载能力下降。然而,地震脆性曲线及其应用通常并不考虑序列效应。本研究调查了连续地震事件对 1982 年前后在日本建造的 3 层、6 层和 9 层钢筋混凝土建筑的地震脆性曲线的影响。研究根据日本六次破坏性地震的记录运动,在单次冲击和连续冲击影响下进行的动态非线性多自由度分析,提出了分析脆性曲线。结果表明,地震序列会增加破坏概率。脆性曲线的增加遵循高斯函数。该研究提出了一个回归模型,可用于其他地震区,以估算地震序列对单冲击地震脆度曲线的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bulletin of Earthquake Engineering
Bulletin of Earthquake Engineering 工程技术-地球科学综合
CiteScore
8.90
自引率
19.60%
发文量
263
审稿时长
7.5 months
期刊介绍: Bulletin of Earthquake Engineering presents original, peer-reviewed papers on research related to the broad spectrum of earthquake engineering. The journal offers a forum for presentation and discussion of such matters as European damaging earthquakes, new developments in earthquake regulations, and national policies applied after major seismic events, including strengthening of existing buildings. Coverage includes seismic hazard studies and methods for mitigation of risk; earthquake source mechanism and strong motion characterization and their use for engineering applications; geological and geotechnical site conditions under earthquake excitations; cyclic behavior of soils; analysis and design of earth structures and foundations under seismic conditions; zonation and microzonation methodologies; earthquake scenarios and vulnerability assessments; earthquake codes and improvements, and much more. This is the Official Publication of the European Association for Earthquake Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信