Reduced Graphene Oxide@Bimodal TiO2 Nanocomposites as an Efficacious Console for Room Temperature n-Butanol Gas Sensing

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Nileshkumar M. Pardeshi, Rahul S. Ghuge, Priyanka N. Birla, Ratna Chauhan, Shyamal P. Bhalekar, Manish D. Shinde*, Yuvaraj Sivalingam, Rajendra D. Kale* and Sunit B. Rane, 
{"title":"Reduced Graphene Oxide@Bimodal TiO2 Nanocomposites as an Efficacious Console for Room Temperature n-Butanol Gas Sensing","authors":"Nileshkumar M. Pardeshi,&nbsp;Rahul S. Ghuge,&nbsp;Priyanka N. Birla,&nbsp;Ratna Chauhan,&nbsp;Shyamal P. Bhalekar,&nbsp;Manish D. Shinde*,&nbsp;Yuvaraj Sivalingam,&nbsp;Rajendra D. Kale* and Sunit B. Rane,&nbsp;","doi":"10.1021/acsaelm.4c00849","DOIUrl":null,"url":null,"abstract":"<p >Metal oxide nanomaterials possess an exceptional physical and chemical behavior apposite for gas-sensing applications. Among them, titanium dioxide (TiO<sub>2</sub>) is a promising, robust, and economical material, and when paired with two-dimensional (2D) materials such as reduced graphene oxide (rGO), the resultant composite system is promoted to an interesting gas-sensing candidate. Properties of rGO- and TiO<sub>2</sub>-based nanocomposites depend on the size and shape of TiO<sub>2</sub> nanoparticles and the weight percentage (wt %) ratio of rGO/TiO<sub>2</sub>. Herein, the preparation of rGO@bimodal TiO<sub>2</sub> nanocomposites (hereafter referred to as G@TiO<sub>2</sub>) by the conventional hydrothermal method having different wt % (1, 2.5, 5, and 10) of rGO with bimodal TiO<sub>2</sub> nanoparticles is reported. Structural, optical, morphological, and microstructural characterizations of the prepared nanocomposites revealed the generation of elongated submicron particles and nanorods of bimodal TiO<sub>2</sub> in the G@TiO<sub>2</sub> samples. The gas sensors based on the prepared materials were fabricated to evaluate their gas-sensing properties. The comparative analysis illustrated that the sensor based on 2.5%G@TiO<sub>2</sub> presented the highest sensitivity and selectivity to <i>n</i>-butanol at room temperature (25 °C). Furthermore, supplemental investigation on <i>n</i>-butanol adsorption properties of all sensors was carried out using a scanning Kelvin probe (SKP) technique, which further corroborated the exceptional <i>n</i>-butanol adsorption (&gt;2 times) for the 2.5%G@TiO<sub>2</sub> surface at room temperature.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.4c00849","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Metal oxide nanomaterials possess an exceptional physical and chemical behavior apposite for gas-sensing applications. Among them, titanium dioxide (TiO2) is a promising, robust, and economical material, and when paired with two-dimensional (2D) materials such as reduced graphene oxide (rGO), the resultant composite system is promoted to an interesting gas-sensing candidate. Properties of rGO- and TiO2-based nanocomposites depend on the size and shape of TiO2 nanoparticles and the weight percentage (wt %) ratio of rGO/TiO2. Herein, the preparation of rGO@bimodal TiO2 nanocomposites (hereafter referred to as G@TiO2) by the conventional hydrothermal method having different wt % (1, 2.5, 5, and 10) of rGO with bimodal TiO2 nanoparticles is reported. Structural, optical, morphological, and microstructural characterizations of the prepared nanocomposites revealed the generation of elongated submicron particles and nanorods of bimodal TiO2 in the G@TiO2 samples. The gas sensors based on the prepared materials were fabricated to evaluate their gas-sensing properties. The comparative analysis illustrated that the sensor based on 2.5%G@TiO2 presented the highest sensitivity and selectivity to n-butanol at room temperature (25 °C). Furthermore, supplemental investigation on n-butanol adsorption properties of all sensors was carried out using a scanning Kelvin probe (SKP) technique, which further corroborated the exceptional n-butanol adsorption (>2 times) for the 2.5%G@TiO2 surface at room temperature.

Abstract Image

还原石墨烯氧化物@双峰 TiO2 纳米复合材料作为室温正丁醇气体传感的有效控制台
金属氧化物纳米材料具有特殊的物理和化学特性,适合气体传感应用。其中,二氧化钛(TiO2)是一种前景广阔、坚固耐用且经济实惠的材料,当与还原氧化石墨烯(rGO)等二维(2D)材料配对时,所产生的复合系统将成为一种有趣的气体传感候选材料。基于 rGO 和 TiO2 的纳米复合材料的性能取决于 TiO2 纳米颗粒的尺寸和形状以及 rGO/TiO2 的重量百分比(wt %)比例。本文报道了采用传统水热法制备 rGO@ 双峰 TiO2 纳米复合材料(以下简称 G@TiO2)的方法,其中 rGO 与双峰 TiO2 纳米颗粒的重量百分比各不相同(1、2.5、5 和 10)。对所制备的纳米复合材料进行的结构、光学、形态和微观结构表征表明,在 G@TiO2 样品中生成了细长的亚微米颗粒和双峰 TiO2 纳米棒。以制备的材料为基础制作了气体传感器,以评估其气体传感性能。对比分析表明,基于 2.5%G@TiO2 的传感器在室温(25 °C)下对正丁醇的灵敏度和选择性最高。此外,还利用扫描开尔文探针(SKP)技术对所有传感器的正丁醇吸附特性进行了补充研究,进一步证实了 2.5%G@TiO2 表面在室温下对正丁醇的超强吸附能力(2 倍)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信