Silicon Dioxide (SiO2) Nanoparticles as a Alternaria alternata Fungi Mitigator on Biomass, Photosynthetic Machinery, Nutriome and Antioxidant Capacity of Barley (Hordeum vulgare L.)
Besma Sghaier-Hammami, Rim Ben Mansour, Mouna Messaoud, Narjes Baazaoui, Souad Ettlili, Ridha Elleuch, Rached Salhi, Rania Sassi, Manel Benlakhdar, Sawsen Selmi, Malek Smida, Fathia Zribi, Sonia Labidi, Sofiene B. M. Hammami, Jesús Jorrin Novo
{"title":"Silicon Dioxide (SiO2) Nanoparticles as a Alternaria alternata Fungi Mitigator on Biomass, Photosynthetic Machinery, Nutriome and Antioxidant Capacity of Barley (Hordeum vulgare L.)","authors":"Besma Sghaier-Hammami, Rim Ben Mansour, Mouna Messaoud, Narjes Baazaoui, Souad Ettlili, Ridha Elleuch, Rached Salhi, Rania Sassi, Manel Benlakhdar, Sawsen Selmi, Malek Smida, Fathia Zribi, Sonia Labidi, Sofiene B. M. Hammami, Jesús Jorrin Novo","doi":"10.1007/s12633-024-03031-7","DOIUrl":null,"url":null,"abstract":"<div><p>Nowadays <i>Alternaria</i> is considered one of the main fungi causing damage in cereal crop such barley. This work was designed to assess the potential role of silicon dioxide nanoparticles (SiO<sub>2</sub> NPs) in enhancing barley's tolerance against <i>A. alternata</i> attack. For this purpose, twenty day-olds, seedlings were irrigated either with tap water or with SiO<sub>2</sub> NPs solutions at 20 and 200 ppm for one week. After that, different group of seedlings were exposed to fungus inoculation and the others serve as control. The results showed that the fungi attack reduced seedlings biomass, hydration status, transpiration, stomatal conductance, total antioxidant activity, and DPPH levels compared to non-inoculated seedlings. Meanwhile, there was an increase in total phenolic compounds and flavonoid contents. The application of SiO<sub>2</sub> NPs in absence of inoculation, resulted in an increase in seedling shoot length, shoot and root biomass, and water content at any NPs concentrations. Furthermore, when applied prior to inoculation at both concentrations (20 and 200 ppm), SiO<sub>2</sub> NPs mitigated the effects of pathogen attack by enhancing net CO<sub>2</sub> assimilation rate, internal CO<sub>2</sub> concentration, transpiration, and stomatal conductance and increasing total antioxidant activity and DPPH antioxidant profiles compared to inoculated plants. The shoot exhibited a significant increase in zinc, iron, manganese, and potassium with SiO<sub>2</sub> NPs at 200 ppm, regardless of the presence of fungi. The substrate's pH and conductivity remained unchanged compared to the control. However, there was a notable increase in nitrogen, manganese, potassium, and iron contents. On the other hand, levels of zinc and copper slightly decreased. This exploratory work highlights the protective role of SiO<sub>2</sub> NPs in barley seedlings under pathogen attack conditions possibly due to the Si-mediated protection against oxidative stress and photosynthesis modulation. Using SiO<sub>2</sub> NPs as a supplement offers a cost-effective and an eco-friendly and avenue for sustainable agriculture. They aid in nutrient delivery, help plants combat biotic stress, and enhance plant tolerance.</p></div>","PeriodicalId":776,"journal":{"name":"Silicon","volume":"16 11","pages":"4929 - 4944"},"PeriodicalIF":2.8000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silicon","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12633-024-03031-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Nowadays Alternaria is considered one of the main fungi causing damage in cereal crop such barley. This work was designed to assess the potential role of silicon dioxide nanoparticles (SiO2 NPs) in enhancing barley's tolerance against A. alternata attack. For this purpose, twenty day-olds, seedlings were irrigated either with tap water or with SiO2 NPs solutions at 20 and 200 ppm for one week. After that, different group of seedlings were exposed to fungus inoculation and the others serve as control. The results showed that the fungi attack reduced seedlings biomass, hydration status, transpiration, stomatal conductance, total antioxidant activity, and DPPH levels compared to non-inoculated seedlings. Meanwhile, there was an increase in total phenolic compounds and flavonoid contents. The application of SiO2 NPs in absence of inoculation, resulted in an increase in seedling shoot length, shoot and root biomass, and water content at any NPs concentrations. Furthermore, when applied prior to inoculation at both concentrations (20 and 200 ppm), SiO2 NPs mitigated the effects of pathogen attack by enhancing net CO2 assimilation rate, internal CO2 concentration, transpiration, and stomatal conductance and increasing total antioxidant activity and DPPH antioxidant profiles compared to inoculated plants. The shoot exhibited a significant increase in zinc, iron, manganese, and potassium with SiO2 NPs at 200 ppm, regardless of the presence of fungi. The substrate's pH and conductivity remained unchanged compared to the control. However, there was a notable increase in nitrogen, manganese, potassium, and iron contents. On the other hand, levels of zinc and copper slightly decreased. This exploratory work highlights the protective role of SiO2 NPs in barley seedlings under pathogen attack conditions possibly due to the Si-mediated protection against oxidative stress and photosynthesis modulation. Using SiO2 NPs as a supplement offers a cost-effective and an eco-friendly and avenue for sustainable agriculture. They aid in nutrient delivery, help plants combat biotic stress, and enhance plant tolerance.
期刊介绍:
The journal Silicon is intended to serve all those involved in studying the role of silicon as an enabling element in materials science. There are no restrictions on disciplinary boundaries provided the focus is on silicon-based materials or adds significantly to the understanding of such materials. Accordingly, such contributions are welcome in the areas of inorganic and organic chemistry, physics, biology, engineering, nanoscience, environmental science, electronics and optoelectronics, and modeling and theory. Relevant silicon-based materials include, but are not limited to, semiconductors, polymers, composites, ceramics, glasses, coatings, resins, composites, small molecules, and thin films.