Hovannes Kulhandjian, Jeremiah Barron, Megan Tamiyasu, Mateo Thompson, Michel Kulhandjian
{"title":"AI-Based Pedestrian Detection and Avoidance at Night Using Multiple Sensors","authors":"Hovannes Kulhandjian, Jeremiah Barron, Megan Tamiyasu, Mateo Thompson, Michel Kulhandjian","doi":"10.3390/jsan13030034","DOIUrl":null,"url":null,"abstract":"In this paper, we present a pedestrian detection and avoidance scheme utilizing multi-sensor data collection and machine learning for intelligent transportation systems (ITSs). The system integrates a video camera, an infrared (IR) camera, and a micro-Doppler radar for data acquisition and training. A deep convolutional neural network (DCNN) is employed to process RGB and IR images. The RGB dataset comprises 1200 images (600 with pedestrians and 600 without), while the IR dataset includes 1000 images (500 with pedestrians and 500 without), 85% of which were captured at night. Two distinct DCNNs were trained using these datasets, achieving a validation accuracy of 99.6% with the RGB camera and 97.3% with the IR camera. The radar sensor determines the pedestrian’s range and direction of travel. Experimental evaluations conducted in a vehicle demonstrated that the multi-sensor detection scheme effectively triggers a warning signal to a vibrating motor on the steering wheel and displays a warning message on the passenger’s touchscreen computer when a pedestrian is detected in potential danger. This system operates efficiently both during the day and at night.","PeriodicalId":37584,"journal":{"name":"Journal of Sensor and Actuator Networks","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sensor and Actuator Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jsan13030034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present a pedestrian detection and avoidance scheme utilizing multi-sensor data collection and machine learning for intelligent transportation systems (ITSs). The system integrates a video camera, an infrared (IR) camera, and a micro-Doppler radar for data acquisition and training. A deep convolutional neural network (DCNN) is employed to process RGB and IR images. The RGB dataset comprises 1200 images (600 with pedestrians and 600 without), while the IR dataset includes 1000 images (500 with pedestrians and 500 without), 85% of which were captured at night. Two distinct DCNNs were trained using these datasets, achieving a validation accuracy of 99.6% with the RGB camera and 97.3% with the IR camera. The radar sensor determines the pedestrian’s range and direction of travel. Experimental evaluations conducted in a vehicle demonstrated that the multi-sensor detection scheme effectively triggers a warning signal to a vibrating motor on the steering wheel and displays a warning message on the passenger’s touchscreen computer when a pedestrian is detected in potential danger. This system operates efficiently both during the day and at night.
期刊介绍:
Journal of Sensor and Actuator Networks (ISSN 2224-2708) is an international open access journal on the science and technology of sensor and actuator networks. It publishes regular research papers, reviews (including comprehensive reviews on complete sensor and actuator networks), and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.