Kang Chen, Guangzhi Zhang, Guidong Di, Xin Guo, Long Wen, Qi Ran, Hualing Ma, Juncheng Dai
{"title":"Application of multi-component seismic data in identifying dolomite reservoirs in the Sichuan Basin","authors":"Kang Chen, Guangzhi Zhang, Guidong Di, Xin Guo, Long Wen, Qi Ran, Hualing Ma, Juncheng Dai","doi":"10.1093/jge/gxae068","DOIUrl":null,"url":null,"abstract":"\n A comprehensive drilling of wells has been conducted in the Permian Qixia Formation in the central Sichuan Basin, revealing a significant number of dolomite reservoirs. High- and medium-porosity dolomite reservoirs are the main gas-producing reservoirs in the Qixia Formation. Seismic PP-wave data show a ‘bright spot’ for high-porosity dolomite reservoir formations but weak responses for medium-porosity dolomite reservoir formations, which is attributed to the inability of P waves to distinguish between medium-porosity reservoirs and limestone. However, medium-porosity dolomite and limestone have different S-wave velocities. Therefore, in this study, the identification of different-porosity dolomite reservoirs using multi-component seismic data was investigated. A comprehensive analysis of the elastic waves by forward modeling shows that the PS-wave amplitude is more sensitive to medium-porosity dolomite than the PP-wave amplitude. Therefore, medium-porosity dolomite reservoirs can be predicted using the amplitude attributes of the PS wave, and high-porosity dolomite reservoirs can be characterized using the PP wave. Meanwhile, the elastic parameter λρ (the product of Lame constant λ and density ρ), which is highly correlated with the dolomite content, can be used as an indicator of dolomite formations. Furthermore, compared to the results of PP-wave inversion, the elastic parameters derived from the joint inversion of PP- and PS-waves exhibited a better correspondence with the well-logging results. The comprehensive use of the seismic amplitude responses of PP and PS waves and multi-component seismic joint inversion can effectively predict high- and medium-porosity dolomite reservoirs. The predicted results can support the exploration and development of the Qixia Formation.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"48 13","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/jge/gxae068","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A comprehensive drilling of wells has been conducted in the Permian Qixia Formation in the central Sichuan Basin, revealing a significant number of dolomite reservoirs. High- and medium-porosity dolomite reservoirs are the main gas-producing reservoirs in the Qixia Formation. Seismic PP-wave data show a ‘bright spot’ for high-porosity dolomite reservoir formations but weak responses for medium-porosity dolomite reservoir formations, which is attributed to the inability of P waves to distinguish between medium-porosity reservoirs and limestone. However, medium-porosity dolomite and limestone have different S-wave velocities. Therefore, in this study, the identification of different-porosity dolomite reservoirs using multi-component seismic data was investigated. A comprehensive analysis of the elastic waves by forward modeling shows that the PS-wave amplitude is more sensitive to medium-porosity dolomite than the PP-wave amplitude. Therefore, medium-porosity dolomite reservoirs can be predicted using the amplitude attributes of the PS wave, and high-porosity dolomite reservoirs can be characterized using the PP wave. Meanwhile, the elastic parameter λρ (the product of Lame constant λ and density ρ), which is highly correlated with the dolomite content, can be used as an indicator of dolomite formations. Furthermore, compared to the results of PP-wave inversion, the elastic parameters derived from the joint inversion of PP- and PS-waves exhibited a better correspondence with the well-logging results. The comprehensive use of the seismic amplitude responses of PP and PS waves and multi-component seismic joint inversion can effectively predict high- and medium-porosity dolomite reservoirs. The predicted results can support the exploration and development of the Qixia Formation.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.