{"title":"Impedance Inhomogeneity in SiO/Gr Composite Anode","authors":"Xiang Gao, Jun Xu","doi":"10.1002/smsc.202300291","DOIUrl":null,"url":null,"abstract":"Silicon/carbon (Si/C) composite anode materials have emerged as promising candidates for high‐energy‐density lithium‐ion batteries (LIBs), boasting advantages such as high capacity, cost‐effectiveness, and abundance. However, the integration of Si‐based materials into conventional graphite anodes introduces heterogeneous interactions between electrochemical and mechanical behaviors, owing to substantial volume changes and chemical potential variations. One significant consequence of these interactions is the impedance inhomogeneity, which adversely affects the discharging capacity of Si‐based LIBs. In an effort to comprehensively understand this phenomenon and its underlying mechanisms, an electrochemo‐mechanical‐coupled model is established, incorporating detailed particle geometries on the anode side. The model is employed to investigate polarization components and their evolution during the charging/discharging process. Various influencing factors, such as SiO weight percentage (wt%), electrode thickness, and SiO distributions (both in terms of distribution uniformity and direction), are systematically discussed. In this study, an efficient computational approach is offered to analyze battery polarizations, deepening the understanding of the inhomogeneous evolution of these polarizations in Si/C composite anodes. Ultimately, these insights guide the design of anodes for next‐generation high‐energy‐density LIBs.","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":"30 9","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202300291","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Silicon/carbon (Si/C) composite anode materials have emerged as promising candidates for high‐energy‐density lithium‐ion batteries (LIBs), boasting advantages such as high capacity, cost‐effectiveness, and abundance. However, the integration of Si‐based materials into conventional graphite anodes introduces heterogeneous interactions between electrochemical and mechanical behaviors, owing to substantial volume changes and chemical potential variations. One significant consequence of these interactions is the impedance inhomogeneity, which adversely affects the discharging capacity of Si‐based LIBs. In an effort to comprehensively understand this phenomenon and its underlying mechanisms, an electrochemo‐mechanical‐coupled model is established, incorporating detailed particle geometries on the anode side. The model is employed to investigate polarization components and their evolution during the charging/discharging process. Various influencing factors, such as SiO weight percentage (wt%), electrode thickness, and SiO distributions (both in terms of distribution uniformity and direction), are systematically discussed. In this study, an efficient computational approach is offered to analyze battery polarizations, deepening the understanding of the inhomogeneous evolution of these polarizations in Si/C composite anodes. Ultimately, these insights guide the design of anodes for next‐generation high‐energy‐density LIBs.
期刊介绍:
ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology.
The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies.
We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.