Assessing climate change impacts on irrigation water requirements in the Lower Mahanadi Basin: A CMIP6-based spatiotemporal analysis and future projections
{"title":"Assessing climate change impacts on irrigation water requirements in the Lower Mahanadi Basin: A CMIP6-based spatiotemporal analysis and future projections","authors":"Pushpanjali Kumari, Rahul Kumar Jaiswal, Harendra Prasad Singh","doi":"10.2166/wcc.2024.152","DOIUrl":null,"url":null,"abstract":"\n \n High climate change stress escalates agriculture risks, particularly in nations like India heavily reliant on farming. Previous studies focused on Coupled Model Intercomparison Project Phase (CMIP3) and (CMIP5) scenarios for large river basins, but the heightened risk of local climate changes poses a significant threat to smaller basins, notably affecting crops. This study investigates the spatiotemporal dynamics of climate change impacts on paddy crop irrigation in India's Lower Mahanadi Basin, utilizing the latest general circulation models (GCMs) from the CMIP6, focuses on two emission scenarios, SSP585 and SSP370. Thirteen models were analysed, top six were selected based on statistical criteria like PBIAS, NSE, R2, RSR, and RMSE. Models project climate changes for near- (2025–2050), mid- (2051–2075), and far-future (2076–2100) periods against a baseline (1981–2014), investigating spatiotemporal variations in rainfall, temperature, and irrigation water requirements (IWRs) in the region. In both scenarios, future mean seasonal rainfall is expected to increase compared with the baseline. SSP370 projects a 23.7% rise in minimum rainfall, while maximum rainfall varies by 11.5%. SSP585, on the other hand, projects a 9.53% decrease in maximum IWR and a 28.9% increase in maximum rainfall compared with the baseline. Both scenarios anticipate a 3–4 °C temperature increase in the far-future.","PeriodicalId":49150,"journal":{"name":"Journal of Water and Climate Change","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Climate Change","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wcc.2024.152","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
High climate change stress escalates agriculture risks, particularly in nations like India heavily reliant on farming. Previous studies focused on Coupled Model Intercomparison Project Phase (CMIP3) and (CMIP5) scenarios for large river basins, but the heightened risk of local climate changes poses a significant threat to smaller basins, notably affecting crops. This study investigates the spatiotemporal dynamics of climate change impacts on paddy crop irrigation in India's Lower Mahanadi Basin, utilizing the latest general circulation models (GCMs) from the CMIP6, focuses on two emission scenarios, SSP585 and SSP370. Thirteen models were analysed, top six were selected based on statistical criteria like PBIAS, NSE, R2, RSR, and RMSE. Models project climate changes for near- (2025–2050), mid- (2051–2075), and far-future (2076–2100) periods against a baseline (1981–2014), investigating spatiotemporal variations in rainfall, temperature, and irrigation water requirements (IWRs) in the region. In both scenarios, future mean seasonal rainfall is expected to increase compared with the baseline. SSP370 projects a 23.7% rise in minimum rainfall, while maximum rainfall varies by 11.5%. SSP585, on the other hand, projects a 9.53% decrease in maximum IWR and a 28.9% increase in maximum rainfall compared with the baseline. Both scenarios anticipate a 3–4 °C temperature increase in the far-future.
期刊介绍:
Journal of Water and Climate Change publishes refereed research and practitioner papers on all aspects of water science, technology, management and innovation in response to climate change, with emphasis on reduction of energy usage.