{"title":"Modulated Short-Time Fourier-Transform-Based Nonstationary Signal Decomposition for Dual-Comb Ranging Systems","authors":"Ningning Han, Chao Wang, Zhiyang Wu, Xiaoyu Zhai, Yongzhen Pei, Haonan Shi, Xiaobo Li","doi":"10.3390/photonics11060560","DOIUrl":null,"url":null,"abstract":"Analyzing and breaking down nonstationary signals into their primary components is significant in various optical applications. In this work, we design a direct, localized, and mathematically rigorous method for nonstationary signals by employing a modulated short-time Fourier transform (MSTFT) that can be implemented efficiently using fast Fourier transform, subsequently isolating energy-concentrated sets through an approximate threshold process, allowing us to directly retrieve instantaneous frequencies and signal components by determining the maximum frequency within each set. MSTFT provides a new insight into the time-frequency analysis in multicomponent signal separation and can be extended to other time-frequency transforms. Beyond the analysis of the synthetic, we also perform real dual-comb ranging signals under turbid water, and the results show an approximate 1.5 dB improvement in peak signal-to-noise ratio, further demonstrating the effectiveness of our method in challenging conditions.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"20 8","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics11060560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Analyzing and breaking down nonstationary signals into their primary components is significant in various optical applications. In this work, we design a direct, localized, and mathematically rigorous method for nonstationary signals by employing a modulated short-time Fourier transform (MSTFT) that can be implemented efficiently using fast Fourier transform, subsequently isolating energy-concentrated sets through an approximate threshold process, allowing us to directly retrieve instantaneous frequencies and signal components by determining the maximum frequency within each set. MSTFT provides a new insight into the time-frequency analysis in multicomponent signal separation and can be extended to other time-frequency transforms. Beyond the analysis of the synthetic, we also perform real dual-comb ranging signals under turbid water, and the results show an approximate 1.5 dB improvement in peak signal-to-noise ratio, further demonstrating the effectiveness of our method in challenging conditions.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.