Green Synthesis, Characterization, and Evaluation of Photocatalytic and Antibacterial Activities of Co3O4–ZnO Nanocomposites Using Calpurnia aurea Leaf Extract

IF 3.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ACS Omega Pub Date : 2024-06-14 DOI:10.1021/acsomega.4c01595
Kemal Mohammed Gendo*, Raji Feyisa Bogale* and Girmaye Kenasa, 
{"title":"Green Synthesis, Characterization, and Evaluation of Photocatalytic and Antibacterial Activities of Co3O4–ZnO Nanocomposites Using Calpurnia aurea Leaf Extract","authors":"Kemal Mohammed Gendo*,&nbsp;Raji Feyisa Bogale* and Girmaye Kenasa,&nbsp;","doi":"10.1021/acsomega.4c01595","DOIUrl":null,"url":null,"abstract":"<p >The green synthesis of transition metal oxide nanocomposites using plant extracts is a new and effective method that avoids the involvement of hazardous chemicals. Nondegradable organic pollutants and antibiotic drug resistance have become serious public health issues worldwide. Hence, the main objective of this study is to synthesize Co<sub>3</sub>O<sub>4</sub>–ZnO nanocomposites using <i>Calpurnia aurea</i> leaf extract and evaluate its photocatalytic and antibacterial activities. The green synthesized particles were characterized using UV–vis spectra, Fourier transform infrared spectroscopy, X-ray diffraction techniques, and scanning electron microscopy combined with energy-dispersive X-ray studies. The synthesized particles were found to be crystalline in nature with average crystallite sizes of 23.82, 14.79, 15.99, 16.46, and 21.73 nm. Scanning electron microscopy shows the spherical morphology of Co<sub>3</sub>O<sub>4</sub>–ZnO NCs, and energy-dispersive X-ray analysis confirms the formation of highly pure ZnO NPs and Co<sub>3</sub>O<sub>4</sub>–ZnO NCs. The photocatalytic activity was performed under natural sunlight using malachite green as an organic dye pollutant. The green synthesized ZnO NPs, Co<sub>3</sub>O<sub>4</sub> NPs, 1:4, 1:3, and 1:2 Co<sub>3</sub>O<sub>4</sub>−ZnO NCs showed high degradation efficiency after 60 min of irradiation. The synthetic material showed good potential against <i>Staphylococcus aureus</i> and <i>Escherichia coli</i>, with the highest growth inhibition recorded by 1:2 Co<sub>3</sub>O<sub>4</sub>–ZnO NCs. The kinetics study of the photocatalytic degradation was confirmed as pseudo first order, and the possible mechanisms for both photocatalytic and antibacterial activities were clearly determined.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c01595","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c01595","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The green synthesis of transition metal oxide nanocomposites using plant extracts is a new and effective method that avoids the involvement of hazardous chemicals. Nondegradable organic pollutants and antibiotic drug resistance have become serious public health issues worldwide. Hence, the main objective of this study is to synthesize Co3O4–ZnO nanocomposites using Calpurnia aurea leaf extract and evaluate its photocatalytic and antibacterial activities. The green synthesized particles were characterized using UV–vis spectra, Fourier transform infrared spectroscopy, X-ray diffraction techniques, and scanning electron microscopy combined with energy-dispersive X-ray studies. The synthesized particles were found to be crystalline in nature with average crystallite sizes of 23.82, 14.79, 15.99, 16.46, and 21.73 nm. Scanning electron microscopy shows the spherical morphology of Co3O4–ZnO NCs, and energy-dispersive X-ray analysis confirms the formation of highly pure ZnO NPs and Co3O4–ZnO NCs. The photocatalytic activity was performed under natural sunlight using malachite green as an organic dye pollutant. The green synthesized ZnO NPs, Co3O4 NPs, 1:4, 1:3, and 1:2 Co3O4−ZnO NCs showed high degradation efficiency after 60 min of irradiation. The synthetic material showed good potential against Staphylococcus aureus and Escherichia coli, with the highest growth inhibition recorded by 1:2 Co3O4–ZnO NCs. The kinetics study of the photocatalytic degradation was confirmed as pseudo first order, and the possible mechanisms for both photocatalytic and antibacterial activities were clearly determined.

Abstract Image

利用菖蒲叶提取物进行 Co3O4-ZnO 纳米复合材料的绿色合成、表征及光催化和抗菌活性评估
利用植物提取物绿色合成过渡金属氧化物纳米复合材料是一种新的有效方法,可避免使用有害化学物质。不可降解的有机污染物和抗生素耐药性已成为全球严重的公共卫生问题。因此,本研究的主要目的是利用菖蒲叶提取物合成 Co3O4-ZnO 纳米复合材料,并评估其光催化和抗菌活性。使用紫外-可见光谱、傅立叶变换红外光谱、X 射线衍射技术和扫描电子显微镜结合能量色散 X 射线研究对绿色合成颗粒进行了表征。研究发现,合成的颗粒呈结晶状,平均结晶尺寸分别为 23.82、14.79、15.99、16.46 和 21.73 纳米。扫描电子显微镜显示了 Co3O4-ZnO NCs 的球形形态,能量色散 X 射线分析证实了高纯度 ZnO NPs 和 Co3O4-ZnO NCs 的形成。以孔雀石绿为有机染料污染物,在自然光下进行了光催化活性实验。绿色合成的 ZnO NPs、Co3O4 NPs、1:4、1:3 和 1:2 Co3O4-ZnO NCs 在 60 分钟的照射后显示出较高的降解效率。合成材料对金黄色葡萄球菌和大肠杆菌具有良好的抑制潜力,其中 1:2 Co3O4-ZnO NCs 的生长抑制率最高。光催化降解的动力学研究被证实为伪一阶,并明确了光催化和抗菌活性的可能机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信