Simplified Universal Equations for Ionic Conductivity and Transference Number

Meenesh R. Singh, Priyanka G Singh, V. V. Gande, Rohit Chauhan, Nitin Minocha
{"title":"Simplified Universal Equations for Ionic Conductivity and Transference Number","authors":"Meenesh R. Singh, Priyanka G Singh, V. V. Gande, Rohit Chauhan, Nitin Minocha","doi":"10.1149/1945-7111/ad586c","DOIUrl":null,"url":null,"abstract":"\n Nernst-Einstein equation can provide a reasonable estimate of the ionic conductivity of dilute solutions. For concentrated solutions, alternate methods such as Green-Kubo relations and Einstein relations are more suitable to account for ion-ion interactions. Such computations can be expensive for multicomponent systems. Simplified mathematical expressions like the Nernst-Einstein equation do not exist for concentrated multicomponent mixtures. Newman's treatment of multicomponent concentrated solutions yields a conductivity relation in terms of species concentration and Onsager phenomenological coefficients. However, the estimation of these phenomenological coefficients is not straightforward. Here, mathematical formulations that relate the phenomenological coefficients with the friction coefficients are developed, leading to simplified, ready-to-use expressions of conductivity and transference numbers that can be used for a wide range of ionic mixtures. This approach involves spectral decomposition of the matrix of Onsager phenomenological coefficients. The general analytical expressions for conductivity and transference number are simplified for binary electrolytes, and numerical solutions are provided for ternary and quaternary mixtures with ion dissociation.","PeriodicalId":509718,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad586c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nernst-Einstein equation can provide a reasonable estimate of the ionic conductivity of dilute solutions. For concentrated solutions, alternate methods such as Green-Kubo relations and Einstein relations are more suitable to account for ion-ion interactions. Such computations can be expensive for multicomponent systems. Simplified mathematical expressions like the Nernst-Einstein equation do not exist for concentrated multicomponent mixtures. Newman's treatment of multicomponent concentrated solutions yields a conductivity relation in terms of species concentration and Onsager phenomenological coefficients. However, the estimation of these phenomenological coefficients is not straightforward. Here, mathematical formulations that relate the phenomenological coefficients with the friction coefficients are developed, leading to simplified, ready-to-use expressions of conductivity and transference numbers that can be used for a wide range of ionic mixtures. This approach involves spectral decomposition of the matrix of Onsager phenomenological coefficients. The general analytical expressions for conductivity and transference number are simplified for binary electrolytes, and numerical solutions are provided for ternary and quaternary mixtures with ion dissociation.
离子导电率和传递数的简化通用方程
内斯特-爱因斯坦方程可以对稀释溶液的离子电导率进行合理估算。对于浓溶液,格林-久保关系和爱因斯坦关系等替代方法更适合考虑离子间的相互作用。对于多组分系统来说,这种计算可能会很昂贵。对于浓度较高的多组分混合物来说,并不存在像内斯特-爱因斯坦方程这样的简化数学表达式。纽曼对多组分浓溶液的处理方法是根据物种浓度和昂萨格现象系数得出电导率关系。然而,这些现象系数的估算并不简单。在此,我们提出了将现象系数与摩擦系数联系起来的数学公式,从而简化了电导率和转移数的表达式,并可用于多种离子混合物。这种方法涉及对昂萨格现象系数矩阵进行频谱分解。对于二元电解质,简化了电导率和转移数的一般分析表达式;对于有离子解离的三元和四元混合物,提供了数值解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信