Jordan derivable mappings on \(B(H)\)

IF 0.6 3区 数学 Q3 MATHEMATICS
L. Chen, F. Guo, Z.-J. Qin
{"title":"Jordan derivable mappings on \\(B(H)\\)","authors":"L. Chen,&nbsp;F. Guo,&nbsp;Z.-J. Qin","doi":"10.1007/s10474-024-01438-7","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(H\\)</span> be a real or complex Hilbert space with the dimension greater than one and <span>\\(B(H)\\)</span> the algebra of all bounded linear operators on <span>\\(H\\)</span>. Assume that <span>\\(\\delta\\)</span> is a linear mapping from <span>\\(B(H)\\)</span> into itself which is Jordan derivable at a given element <span>\\(\\Omega\\in B(H)\\)</span>, in the sense that <span>\\(\\delta(A\\circ B)=\\delta(A)\\circ B+A\\circ\\delta (B)\\)</span> holds for all <span>\\(A,B\\in B(H)\\)</span> with <span>\\(A\\circ B = \\Omega\\)</span>, where <span>\\(\\circ\\)</span> denotes the Jordan product <span>\\( {A\\circ B } =AB+BA\\)</span>. In this paper, we show that if <span>\\(\\Omega\\)</span> is an arbitrary but fixed nonzero operator, then <span>\\(\\delta\\)</span> is a derivation; if <span>\\(\\Omega\\)</span> is a zero operator, then <span>\\(\\delta\\)</span> is a generalized derivation.</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"173 1","pages":"112 - 121"},"PeriodicalIF":0.6000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-024-01438-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(H\) be a real or complex Hilbert space with the dimension greater than one and \(B(H)\) the algebra of all bounded linear operators on \(H\). Assume that \(\delta\) is a linear mapping from \(B(H)\) into itself which is Jordan derivable at a given element \(\Omega\in B(H)\), in the sense that \(\delta(A\circ B)=\delta(A)\circ B+A\circ\delta (B)\) holds for all \(A,B\in B(H)\) with \(A\circ B = \Omega\), where \(\circ\) denotes the Jordan product \( {A\circ B } =AB+BA\). In this paper, we show that if \(\Omega\) is an arbitrary but fixed nonzero operator, then \(\delta\) is a derivation; if \(\Omega\) is a zero operator, then \(\delta\) is a generalized derivation.

B(H)$$上的乔丹可导映射
让\(H\) 是维度大于一的实或复希尔伯特空间,\(B(H)\) 是\(H\) 上所有有界线性算子的代数。假设\(\delta\)是从\(B(H)\)到自身的线性映射,在给定元素\(\Omega\in B(H)\)处是约旦可导的、在这个意义上,\(\delta(A/circ B)=\delta(A)\circ B+A\circ\delta (B)\)对于所有具有\(A/circ B = \Omega/)的\(A,B/in B(H)\)都成立,其中\(\circ\)表示约旦积\( {A\circ B } =AB+BA/)。在本文中,我们证明了如果\(\Omega\)是一个任意但固定的非零算子,那么\(\delta\)就是一个派生;如果\(\Omega\)是一个零算子,那么\(\delta\)就是一个广义派生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信