{"title":"Response surface modeling and optimization of graphene production by the electrochemical exfoliation of graphite from waste battery (Zn/C)","authors":"Soumia Benredouane, Amal Elfiad, Sabrina Naama, Fatsah Moulai, Tarrek Berrama, Toufik Hadjersi","doi":"10.1007/s11144-024-02671-5","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a novel approach for optimizing graphene yield from waste Zn/C battery graphite through response surface methodology (RSM) and a fractional factorial design. By focusing on graphite extracted from spent batteries and employing a statistically designed experiment, this work contributes to sustainable graphene production with good efficiency. We employed a fractional factorial design (2<sup>5–1</sup>) to identify the influence of five key factors on graphene yield (Ye): reaction time, initial solution temperature, solution pH, bias voltage, and electrolyte concentration. A quadratic regression model was developed using response surface methodology (RSM) and validated through variance analysis (α ≥ 0.98). Subsequently, optimal conditions were determined through analytical methods, identifying the stationary point of the model and assessing the determinant value of the Hessian matrix. These optimal conditions were characterized by a reaction time (t) of 54.6 min, an initial solution temperature (Ti) of 34.5 °C, and a bias voltage (V) of 15.42 V. Under these conditions, the predicted graphene yield (Ye) was 40% ± 3%.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":750,"journal":{"name":"Reaction Kinetics, Mechanisms and Catalysis","volume":"137 5","pages":"2661 - 2681"},"PeriodicalIF":1.7000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Kinetics, Mechanisms and Catalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11144-024-02671-5","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a novel approach for optimizing graphene yield from waste Zn/C battery graphite through response surface methodology (RSM) and a fractional factorial design. By focusing on graphite extracted from spent batteries and employing a statistically designed experiment, this work contributes to sustainable graphene production with good efficiency. We employed a fractional factorial design (25–1) to identify the influence of five key factors on graphene yield (Ye): reaction time, initial solution temperature, solution pH, bias voltage, and electrolyte concentration. A quadratic regression model was developed using response surface methodology (RSM) and validated through variance analysis (α ≥ 0.98). Subsequently, optimal conditions were determined through analytical methods, identifying the stationary point of the model and assessing the determinant value of the Hessian matrix. These optimal conditions were characterized by a reaction time (t) of 54.6 min, an initial solution temperature (Ti) of 34.5 °C, and a bias voltage (V) of 15.42 V. Under these conditions, the predicted graphene yield (Ye) was 40% ± 3%.
期刊介绍:
Reaction Kinetics, Mechanisms and Catalysis is a medium for original contributions in the following fields:
-kinetics of homogeneous reactions in gas, liquid and solid phase;
-Homogeneous catalysis;
-Heterogeneous catalysis;
-Adsorption in heterogeneous catalysis;
-Transport processes related to reaction kinetics and catalysis;
-Preparation and study of catalysts;
-Reactors and apparatus.
Reaction Kinetics, Mechanisms and Catalysis was formerly published under the title Reaction Kinetics and Catalysis Letters.