{"title":"Thermoeconomic optimization with a dissipation cost","authors":"A. Ares de Parga-Regalado, Gonzalo Ares de Parga","doi":"10.1515/jnet-2023-0089","DOIUrl":null,"url":null,"abstract":"Abstract From a finite-time thermodynamics perspective, a thermoeconomic analysis of a Novikov model employing a linear heat transfer law is carried out. A new component in the cost function is proposed to examine its relationship with waste management while operating in the maximum power, ecological, and efficient power regimes. The methodology consists of optimizing the profit function by including our new waste management cost function, leveraging the same method used by DeVos (“Endoreversible thermoeconomics,” Energy Convers. Manage., vol. 36, pp. 1–5, 1995) and Pacheco et al. (“Thermoeconomic optimization of an irreversible novikov plant model under different regimes of performance,” Entropy, vol. 19, p. 118, 2017). Searching for the optimal thermoeconomic efficiencies for the ecological case a novel numerical method developed by the corresponding author (A. M. Ares de Parga-Regalado, “Analytical approximation of optimal thermoeconomic efficiencies for a novikov engine with a Stefan–Boltzmann heat transfer law,” Results Phys., 2023) is used. Analytical expressions for the optimal efficiencies are obtained, and the impact of the proposed term on these values is investigated.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Equilibrium Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/jnet-2023-0089","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract From a finite-time thermodynamics perspective, a thermoeconomic analysis of a Novikov model employing a linear heat transfer law is carried out. A new component in the cost function is proposed to examine its relationship with waste management while operating in the maximum power, ecological, and efficient power regimes. The methodology consists of optimizing the profit function by including our new waste management cost function, leveraging the same method used by DeVos (“Endoreversible thermoeconomics,” Energy Convers. Manage., vol. 36, pp. 1–5, 1995) and Pacheco et al. (“Thermoeconomic optimization of an irreversible novikov plant model under different regimes of performance,” Entropy, vol. 19, p. 118, 2017). Searching for the optimal thermoeconomic efficiencies for the ecological case a novel numerical method developed by the corresponding author (A. M. Ares de Parga-Regalado, “Analytical approximation of optimal thermoeconomic efficiencies for a novikov engine with a Stefan–Boltzmann heat transfer law,” Results Phys., 2023) is used. Analytical expressions for the optimal efficiencies are obtained, and the impact of the proposed term on these values is investigated.
期刊介绍:
The Journal of Non-Equilibrium Thermodynamics serves as an international publication organ for new ideas, insights and results on non-equilibrium phenomena in science, engineering and related natural systems. The central aim of the journal is to provide a bridge between science and engineering and to promote scientific exchange on a) newly observed non-equilibrium phenomena, b) analytic or numeric modeling for their interpretation, c) vanguard methods to describe non-equilibrium phenomena.
Contributions should – among others – present novel approaches to analyzing, modeling and optimizing processes of engineering relevance such as transport processes of mass, momentum and energy, separation of fluid phases, reproduction of living cells, or energy conversion. The journal is particularly interested in contributions which add to the basic understanding of non-equilibrium phenomena in science and engineering, with systems of interest ranging from the macro- to the nano-level.
The Journal of Non-Equilibrium Thermodynamics has recently expanded its scope to place new emphasis on theoretical and experimental investigations of non-equilibrium phenomena in thermophysical, chemical, biochemical and abstract model systems of engineering relevance. We are therefore pleased to invite submissions which present newly observed non-equilibrium phenomena, analytic or fuzzy models for their interpretation, or new methods for their description.