The relationship between SARS-CoV-2 infection and type 1 diabetes mellitus

IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL
Cyril Debuysschere, Magloire Pandoua Nekoua, Enagnon Kazali Alidjinou, Didier Hober
{"title":"The relationship between SARS-CoV-2 infection and type 1 diabetes mellitus","authors":"Cyril Debuysschere, Magloire Pandoua Nekoua, Enagnon Kazali Alidjinou, Didier Hober","doi":"10.1038/s41574-024-01004-9","DOIUrl":null,"url":null,"abstract":"Environmental factors, in particular viral infections, are thought to have an important role in the pathogenesis of type 1 diabetes mellitus (T1DM). The COVID-19 pandemic reinforced this hypothesis as many observational studies and meta-analyses reported a notable increase in the incidence of T1DM following infection with SARS-CoV-2 as well as an association between SARS-CoV-2 infection and the risk of new-onset T1DM. Experimental evidence suggests that human β-cells express SARS-CoV-2 receptors and that SARS-CoV-2 can infect and replicate in β-cells, resulting in structural or functional alterations of these cells. These alterations include reduced numbers of insulin-secreting granules, impaired pro-insulin (or insulin) secretion, and β-cell transdifferentiation or dedifferentiation. The inflammatory environment induced by local or systemic SARS-CoV-2 infection might result in a set of signals (such as pro-inflammatory cytokines) that lead to β-cell alteration or apoptosis or to a bystander activation of T cells and disruption of peripheral tolerance that triggers autoimmunity. Other mechanisms, such as viral persistence, molecular mimicry and activation of endogenous human retroviruses, are also likely to be involved in the pathogenesis of T1DM following SARS-CoV-2 infection. This Review addresses the issue of the involvement of SARS-CoV-2 infection in the development of T1DM using evidence from epidemiological, clinical and experimental studies. Many studies identified an increase in the incidence of type 1 diabetes mellitus (T1DM) during the COVID-19 pandemic, but other reports do not support this association. This Review addresses the issue of the involvement of SARS-CoV-2 infection in the development of T1DM using evidence from epidemiological, clinical and experimental studies.","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41574-024-01004-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Environmental factors, in particular viral infections, are thought to have an important role in the pathogenesis of type 1 diabetes mellitus (T1DM). The COVID-19 pandemic reinforced this hypothesis as many observational studies and meta-analyses reported a notable increase in the incidence of T1DM following infection with SARS-CoV-2 as well as an association between SARS-CoV-2 infection and the risk of new-onset T1DM. Experimental evidence suggests that human β-cells express SARS-CoV-2 receptors and that SARS-CoV-2 can infect and replicate in β-cells, resulting in structural or functional alterations of these cells. These alterations include reduced numbers of insulin-secreting granules, impaired pro-insulin (or insulin) secretion, and β-cell transdifferentiation or dedifferentiation. The inflammatory environment induced by local or systemic SARS-CoV-2 infection might result in a set of signals (such as pro-inflammatory cytokines) that lead to β-cell alteration or apoptosis or to a bystander activation of T cells and disruption of peripheral tolerance that triggers autoimmunity. Other mechanisms, such as viral persistence, molecular mimicry and activation of endogenous human retroviruses, are also likely to be involved in the pathogenesis of T1DM following SARS-CoV-2 infection. This Review addresses the issue of the involvement of SARS-CoV-2 infection in the development of T1DM using evidence from epidemiological, clinical and experimental studies. Many studies identified an increase in the incidence of type 1 diabetes mellitus (T1DM) during the COVID-19 pandemic, but other reports do not support this association. This Review addresses the issue of the involvement of SARS-CoV-2 infection in the development of T1DM using evidence from epidemiological, clinical and experimental studies.

Abstract Image

Abstract Image

SARS-CoV-2 感染与 1 型糖尿病之间的关系
环境因素,尤其是病毒感染,被认为在 1 型糖尿病(T1DM)的发病机制中起着重要作用。COVID-19 大流行强化了这一假设,因为许多观察性研究和荟萃分析报告称,感染 SARS-CoV-2 后,T1DM 的发病率明显增加,而且 SARS-CoV-2 感染与新发 T1DM 的风险之间存在关联。实验证据表明,人的β细胞表达SARS-CoV-2受体,SARS-CoV-2可感染β细胞并在其中复制,导致这些细胞的结构或功能发生改变。这些改变包括胰岛素分泌颗粒数量减少、促胰岛素(或胰岛素)分泌受损、β 细胞发生转分化或去分化。局部或全身感染 SARS-CoV-2 后诱发的炎症环境可能会产生一系列信号(如促炎细胞因子),导致 β 细胞改变或凋亡,或导致 T 细胞的旁观者激活和外周耐受性破坏,从而引发自身免疫。其他机制,如病毒持续存在、分子模仿和激活内源性人类逆转录病毒,也可能参与了 SARS-CoV-2 感染后 T1DM 的发病机制。本综述利用流行病学、临床和实验研究的证据,探讨了 SARS-CoV-2 感染参与 T1DM 发病的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
7.30%
发文量
215
审稿时长
3.5 months
期刊介绍: Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信