{"title":"Omics-enabled understanding of electric aircraft battery electrolytes","authors":"","doi":"10.1016/j.joule.2024.05.013","DOIUrl":null,"url":null,"abstract":"<div><p>Omics is a discipline that identifies and quantifies molecular processes that contribute to the form and function of living systems. Here, we translate omics to study battery systems. By employing precision analytical capabilities across chemical space, we delineate the structure, function, and evolution of interphases when cycling Li-nickel manganese oxide (NMC)811 cells at high power and high voltage with mixed-salt locally superconcentrated electrolytes. Despite differences in their make-up, top-performing electrolytes converged in their cathode–electrolyte interphase (CEI) chemistries, which were unexpectedly enriched with fluoroethers (upregulation) and depleted with LiF (downregulation). Moreover, these atypical CEIs more effectively suppressed leakage current, cathode corrosion, and cathode fracturing, extending battery life. Pouch cells (130 mAh) assembled with 50-μm-thick Li foil, semi-solid NMC811 electrodes (9 mAh cm<sup>−2</sup>), and lean electrolyte (2.2 Ah g<sup>−1</sup>) showed excellent power retention over more than 100 cycles using a realistic mission for electric vertical take-off and landing.</p></div>","PeriodicalId":38,"journal":{"name":"European Journal of Inorganic Chemistry","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2542435124002411/pdfft?md5=a9730b2814651f60a2f24239a2c9186a&pid=1-s2.0-S2542435124002411-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Inorganic Chemistry","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435124002411","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Omics is a discipline that identifies and quantifies molecular processes that contribute to the form and function of living systems. Here, we translate omics to study battery systems. By employing precision analytical capabilities across chemical space, we delineate the structure, function, and evolution of interphases when cycling Li-nickel manganese oxide (NMC)811 cells at high power and high voltage with mixed-salt locally superconcentrated electrolytes. Despite differences in their make-up, top-performing electrolytes converged in their cathode–electrolyte interphase (CEI) chemistries, which were unexpectedly enriched with fluoroethers (upregulation) and depleted with LiF (downregulation). Moreover, these atypical CEIs more effectively suppressed leakage current, cathode corrosion, and cathode fracturing, extending battery life. Pouch cells (130 mAh) assembled with 50-μm-thick Li foil, semi-solid NMC811 electrodes (9 mAh cm−2), and lean electrolyte (2.2 Ah g−1) showed excellent power retention over more than 100 cycles using a realistic mission for electric vertical take-off and landing.
期刊介绍:
The European Journal of Inorganic Chemistry (2019 ISI Impact Factor: 2.529) publishes Full Papers, Communications, and Minireviews from the entire spectrum of inorganic, organometallic, bioinorganic, and solid-state chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
The following journals have been merged to form the two leading journals, European Journal of Inorganic Chemistry and European Journal of Organic Chemistry:
Chemische Berichte
Bulletin des Sociétés Chimiques Belges
Bulletin de la Société Chimique de France
Gazzetta Chimica Italiana
Recueil des Travaux Chimiques des Pays-Bas
Anales de Química
Chimika Chronika
Revista Portuguesa de Química
ACH—Models in Chemistry
Polish Journal of Chemistry
The European Journal of Inorganic Chemistry continues to keep you up-to-date with important inorganic chemistry research results.