{"title":"High-energy emulsification of Allium sativum essential oil boosts insecticidal activity against Planococcus citri with no risk to honeybees","authors":"Antonino Modafferi, Giulia Giunti, Alberto Urbaneja, Francesca Laudani, Ilaria Latella, Meritxell Pérez-Hedo, Michele Ricupero, Vincenzo Palmeri, Orlando Campolo","doi":"10.1007/s10340-024-01800-2","DOIUrl":null,"url":null,"abstract":"<p>The ecotoxicological consequences of synthetic pesticides have encouraged stakeholders to search for eco-friendly pest control tools, like essential oils (EOs). Nano-delivery systems (nanoparticles and nano-emulsions) seem ideal for developing EO-based biopesticides, although production processes should be standardized and implemented. In this study, nano-emulsions loaded with a high amount of <i>Allium sativum</i> L. EO (15%) were developed using different mixed bottom-up/top-down processes. Garlic EO was chemically analyzed by gas chromatography-mass spectrometry (GC-MS) and formulations were physically characterized using Dynamic Light Scattering (DLS) apparatus. The insecticidal activity against <i>Planococcus citri</i> Risso (Hemiptera: Pseudococcidae) and selectivity toward <i>Apis mellifera</i> L. (Hymenoptera: Apidae) worker bees was evaluated. Garlic EO was mainly composed of sulphur components (96.3%), with diallyl disulphide and diallyl trisulphide as the most abundant compounds (37.26% and 28.15%, respectively). Top-down processes could produce stable nano-emulsions with droplet size in the nanometric range (< 200nm) and good polydispersity index (PDI < 0.2). In contrast, the bottom-up emulsion was unstable, and its droplet size was around 500nm after 24 hours. High-energy emulsification processes significantly increased the residual toxicity of garlic EO against 3rd instar <i>P. citri</i> nymphs, whereas the developed formulations were harmless to <i>A. mellifera</i> workers in topical application. This study confirmed that the production process significantly affected the physical properties and efficacy against target pests. The lack of adverse impact on honeybees denotated the potential of these formulations as bioinsecticides in organic and/or IPM programs, although further extended ecotoxicological studies are necessary.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"72 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-024-01800-2","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The ecotoxicological consequences of synthetic pesticides have encouraged stakeholders to search for eco-friendly pest control tools, like essential oils (EOs). Nano-delivery systems (nanoparticles and nano-emulsions) seem ideal for developing EO-based biopesticides, although production processes should be standardized and implemented. In this study, nano-emulsions loaded with a high amount of Allium sativum L. EO (15%) were developed using different mixed bottom-up/top-down processes. Garlic EO was chemically analyzed by gas chromatography-mass spectrometry (GC-MS) and formulations were physically characterized using Dynamic Light Scattering (DLS) apparatus. The insecticidal activity against Planococcus citri Risso (Hemiptera: Pseudococcidae) and selectivity toward Apis mellifera L. (Hymenoptera: Apidae) worker bees was evaluated. Garlic EO was mainly composed of sulphur components (96.3%), with diallyl disulphide and diallyl trisulphide as the most abundant compounds (37.26% and 28.15%, respectively). Top-down processes could produce stable nano-emulsions with droplet size in the nanometric range (< 200nm) and good polydispersity index (PDI < 0.2). In contrast, the bottom-up emulsion was unstable, and its droplet size was around 500nm after 24 hours. High-energy emulsification processes significantly increased the residual toxicity of garlic EO against 3rd instar P. citri nymphs, whereas the developed formulations were harmless to A. mellifera workers in topical application. This study confirmed that the production process significantly affected the physical properties and efficacy against target pests. The lack of adverse impact on honeybees denotated the potential of these formulations as bioinsecticides in organic and/or IPM programs, although further extended ecotoxicological studies are necessary.
期刊介绍:
Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues.
Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates.
Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management.
Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.