{"title":"Forecasting the commuting generation using metropolis-informed GCN and the topological commuter portrait","authors":"Yuting Chen, Pengjun Zhao, Qi Chen","doi":"10.1007/s11116-024-10504-6","DOIUrl":null,"url":null,"abstract":"<p>Understanding commuter traffic in transportation networks is crucial for sustainable urban planning with commuting generation forecasts operating as a pivotal stage in commuter traffic modeling. Overcoming challenges posed by the intricacy of commuting networks and the uncertainty of commuter behaviors, we propose MetroGCN, a metropolis-informed graph convolutional network designed for commuting forecasts in metropolitan areas. MetroGCN introduces dimensions of metropolitan indicators to comprehensively construct commuting networks with diverse socioeconomic features. This model also innovatively embeds topological commuter portraits in spatial interaction through a multi-graph representation approach capturing the semantic spatial correlations based on individual characteristics. By incorporating graph convolution and temporal convolution with a spatial–temporal attention module, MetroGCN adeptly handles high-dimensional dependencies in large commuting networks. Quantitative experiments on the Shenzhen metropolitan area datasets validate the superior performance of MetroGCN compared to state-of-the-art methods. Notably, the results highlight the significance of commuter age and income in forecasting commuting generations. Statistical significance analysis further underscores the importance of anthropic indicators for commuting production forecasts and environmental indicators for commuting attraction forecasts. This research contributes to technical advancement and valuable insights into the critical factors influencing commuting generation forecasts.</p>","PeriodicalId":49419,"journal":{"name":"Transportation","volume":"63 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11116-024-10504-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding commuter traffic in transportation networks is crucial for sustainable urban planning with commuting generation forecasts operating as a pivotal stage in commuter traffic modeling. Overcoming challenges posed by the intricacy of commuting networks and the uncertainty of commuter behaviors, we propose MetroGCN, a metropolis-informed graph convolutional network designed for commuting forecasts in metropolitan areas. MetroGCN introduces dimensions of metropolitan indicators to comprehensively construct commuting networks with diverse socioeconomic features. This model also innovatively embeds topological commuter portraits in spatial interaction through a multi-graph representation approach capturing the semantic spatial correlations based on individual characteristics. By incorporating graph convolution and temporal convolution with a spatial–temporal attention module, MetroGCN adeptly handles high-dimensional dependencies in large commuting networks. Quantitative experiments on the Shenzhen metropolitan area datasets validate the superior performance of MetroGCN compared to state-of-the-art methods. Notably, the results highlight the significance of commuter age and income in forecasting commuting generations. Statistical significance analysis further underscores the importance of anthropic indicators for commuting production forecasts and environmental indicators for commuting attraction forecasts. This research contributes to technical advancement and valuable insights into the critical factors influencing commuting generation forecasts.
期刊介绍:
In our first issue, published in 1972, we explained that this Journal is intended to promote the free and vigorous exchange of ideas and experience among the worldwide community actively concerned with transportation policy, planning and practice. That continues to be our mission, with a clear focus on topics concerned with research and practice in transportation policy and planning, around the world.
These four words, policy and planning, research and practice are our key words. While we have a particular focus on transportation policy analysis and travel behaviour in the context of ground transportation, we willingly consider all good quality papers that are highly relevant to transportation policy, planning and practice with a clear focus on innovation, on extending the international pool of knowledge and understanding. Our interest is not only with transportation policies - and systems and services – but also with their social, economic and environmental impacts, However, papers about the application of established procedures to, or the development of plans or policies for, specific locations are unlikely to prove acceptable unless they report experience which will be of real benefit those working elsewhere. Papers concerned with the engineering, safety and operational management of transportation systems are outside our scope.