Examining the role of biophysical feedbacks on simulated temperature extremes during the Tinderbox Drought and Black Summer bushfires in southeast Australia
IF 6.1 1区 地球科学Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Mengyuan Mu , Manon E.B. Sabot , Anna M. Ukkola , Sami W. Rifai , Martin G. De Kauwe , Sanaa Hobeichi , Andy J. Pitman
{"title":"Examining the role of biophysical feedbacks on simulated temperature extremes during the Tinderbox Drought and Black Summer bushfires in southeast Australia","authors":"Mengyuan Mu , Manon E.B. Sabot , Anna M. Ukkola , Sami W. Rifai , Martin G. De Kauwe , Sanaa Hobeichi , Andy J. Pitman","doi":"10.1016/j.wace.2024.100703","DOIUrl":null,"url":null,"abstract":"<div><p>The Tinderbox Drought (2017–2019) was one of the most severe droughts recorded in Australia. The extreme summer air temperatures (>40 °C) combined with drought, contributed to the unprecedented Black Summer bushfires in 2019–20 over southeast Australia. Whilst the temperature extremes were largely driven by synoptic processes, it is important to understand to what extent interactions between land and atmosphere played a role. In this study, we use the WRF-LIS-CABLE land-atmosphere coupled model to examine the impacts of changes in leaf area index (LAI) and albedo by contrasting simulations with climatological and time-varying LAI and albedo. We analyse the impact of these biophysical feedbacks on temperature extremes and fire risk during the Tinderbox Drought and the Black Summer bushfires. Remote-sensing data showed a decrease in LAI (0.1–4.0 m<sup>2</sup> m<sup>−2</sup>) over the three years of the drought along the southeast coast of Australia relative to the long-term climatology, while albedo increased inland (0.02–0.14). These changes in LAI and albedo were accompanied by an overall decrease in daily maximum temperature (T<sub>max</sub>) in the vast majority of interior regions (by ∼0.5 °C) and, in the 2019–20 summer, by a clear increase in T<sub>max</sub> in the coastal regions of up to ∼1 °C. Increased albedo explained most of the decreases in T<sub>max</sub> inland, whereas increases in T<sub>max</sub> along the coasts were mostly associated with LAI declines. The magnitude of the impact of biophysical changes on temperature demonstrates the potential impact that would be missed in simulations that assumed fixed vegetation properties. Finally, we only found a small impact from LAI and albedo changes on the fire risk (as measured by the fuel moisture index) preceding the Black Summer bushfires, suggesting these biophysical feedbacks did not significantly modulate fire risk. Our results have implications for coupled simulations relying on climatological LAI and albedo, including operation weather and seasonal climate predictions.</p></div>","PeriodicalId":48630,"journal":{"name":"Weather and Climate Extremes","volume":"45 ","pages":"Article 100703"},"PeriodicalIF":6.1000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212094724000641/pdfft?md5=9d5f82a04aabd57bf60656d3a20925a2&pid=1-s2.0-S2212094724000641-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weather and Climate Extremes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212094724000641","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The Tinderbox Drought (2017–2019) was one of the most severe droughts recorded in Australia. The extreme summer air temperatures (>40 °C) combined with drought, contributed to the unprecedented Black Summer bushfires in 2019–20 over southeast Australia. Whilst the temperature extremes were largely driven by synoptic processes, it is important to understand to what extent interactions between land and atmosphere played a role. In this study, we use the WRF-LIS-CABLE land-atmosphere coupled model to examine the impacts of changes in leaf area index (LAI) and albedo by contrasting simulations with climatological and time-varying LAI and albedo. We analyse the impact of these biophysical feedbacks on temperature extremes and fire risk during the Tinderbox Drought and the Black Summer bushfires. Remote-sensing data showed a decrease in LAI (0.1–4.0 m2 m−2) over the three years of the drought along the southeast coast of Australia relative to the long-term climatology, while albedo increased inland (0.02–0.14). These changes in LAI and albedo were accompanied by an overall decrease in daily maximum temperature (Tmax) in the vast majority of interior regions (by ∼0.5 °C) and, in the 2019–20 summer, by a clear increase in Tmax in the coastal regions of up to ∼1 °C. Increased albedo explained most of the decreases in Tmax inland, whereas increases in Tmax along the coasts were mostly associated with LAI declines. The magnitude of the impact of biophysical changes on temperature demonstrates the potential impact that would be missed in simulations that assumed fixed vegetation properties. Finally, we only found a small impact from LAI and albedo changes on the fire risk (as measured by the fuel moisture index) preceding the Black Summer bushfires, suggesting these biophysical feedbacks did not significantly modulate fire risk. Our results have implications for coupled simulations relying on climatological LAI and albedo, including operation weather and seasonal climate predictions.
期刊介绍:
Weather and Climate Extremes
Target Audience:
Academics
Decision makers
International development agencies
Non-governmental organizations (NGOs)
Civil society
Focus Areas:
Research in weather and climate extremes
Monitoring and early warning systems
Assessment of vulnerability and impacts
Developing and implementing intervention policies
Effective risk management and adaptation practices
Engagement of local communities in adopting coping strategies
Information and communication strategies tailored to local and regional needs and circumstances