Selective classification with machine learning uncertainty estimates improves ACS prediction: A retrospective study in the prehospital setting.

Juan Jose Garcia, Rebecca Kitzmiller, Ashok Krishnamurthy, Jessica K Zégre-Hemsey
{"title":"Selective classification with machine learning uncertainty estimates improves ACS prediction: A retrospective study in the prehospital setting.","authors":"Juan Jose Garcia, Rebecca Kitzmiller, Ashok Krishnamurthy, Jessica K Zégre-Hemsey","doi":"10.21203/rs.3.rs-4437265/v1","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate identification of acute coronary syndrome (ACS) in the prehospital sestting is important for timely treatments that reduce damage to the compromised myocardium. Current machine learning approaches lack sufficient performance to safely rule-in or rule-out ACS. Our goal is to identify a method that bridges this gap. To do so, we retrospectively evaluate two promising approaches, an ensemble of gradient boosted decision trees (GBDT) and selective classification (SC) on consecutive patients transported by ambulance to the ED with chest pain and/or anginal equivalents. On the task of ACS classification with 23 prehospital covariates, we found the fusion of the two (GBDT+SC) improves the best reported sensitivity and specificity by 8% and 23% respectively. Accordingly, GBDT+SC is safer than current machine learning approaches to rule-in and rule-out of ACS in the prehospital setting.</p>","PeriodicalId":94282,"journal":{"name":"Research square","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11177980/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research square","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-4437265/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate identification of acute coronary syndrome (ACS) in the prehospital sestting is important for timely treatments that reduce damage to the compromised myocardium. Current machine learning approaches lack sufficient performance to safely rule-in or rule-out ACS. Our goal is to identify a method that bridges this gap. To do so, we retrospectively evaluate two promising approaches, an ensemble of gradient boosted decision trees (GBDT) and selective classification (SC) on consecutive patients transported by ambulance to the ED with chest pain and/or anginal equivalents. On the task of ACS classification with 23 prehospital covariates, we found the fusion of the two (GBDT+SC) improves the best reported sensitivity and specificity by 8% and 23% respectively. Accordingly, GBDT+SC is safer than current machine learning approaches to rule-in and rule-out of ACS in the prehospital setting.

利用机器学习不确定性估计进行选择性分类可改善 ACS 预测:院前环境中的回顾性研究。
在院前环境中准确识别急性冠状动脉综合征(ACS)对于及时治疗以减少对受损心肌的损害非常重要。目前的机器学习方法缺乏足够的性能,无法安全地排除 ACS。我们的目标是找出一种能弥补这一不足的方法。为此,我们对两种有前途的方法进行了回顾性评估,即梯度提升决策树(GBDT)和选择性分类(SC)的组合,评估对象是由救护车送往急诊室的连续胸痛和/或心绞痛患者。在使用 23 个院前协变量进行 ACS 分类的任务中,我们发现两者的融合(GBDT+SC)可将最佳报告灵敏度和特异性分别提高 8% 和 23%。因此,在院前环境中,GBDT+SC 比目前的机器学习方法更能安全地排除 ACS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信