Fibration symmetry-breaking supports functional transitions in a brain network engaged in language.

Tommaso Gili, Bryant Avila, Luca Pasquini, Andrei Holodny, David Phillips, Paolo Boldi, Andrea Gabrielli, Guido Caldarelli, Manuel Zimmer, Hernán A Makse
{"title":"Fibration symmetry-breaking supports functional transitions in a brain network engaged in language.","authors":"Tommaso Gili, Bryant Avila, Luca Pasquini, Andrei Holodny, David Phillips, Paolo Boldi, Andrea Gabrielli, Guido Caldarelli, Manuel Zimmer, Hernán A Makse","doi":"10.21203/rs.3.rs-4409330/v1","DOIUrl":null,"url":null,"abstract":"<p><p>In his book 'A Beautiful Question' <sup>1</sup>, physicist Frank Wilczek argues that symmetry is 'nature's deep design,' governing the behavior of the universe, from the smallest particles to the largest structures <sup>1-4</sup>. While symmetry is a cornerstone of physics, it has not yet been found widespread applicability to describe biological systems <sup>5</sup>, particularly the human brain. In this context, we study the human brain network engaged in language and explore the relationship between the structural connectivity (connectome or structural network) and the emergent synchronization of the mesoscopic regions of interest (functional network). We explain this relationship through a different kind of symmetry than physical symmetry, derived from the categorical notion of Grothendieck fibrations <sup>6</sup>. This introduces a new understanding of the human brain by proposing a local symmetry theory of the connectome, which accounts for how the structure of the brain's network determines its coherent activity. Among the allowed patterns of structural connectivity, synchronization elicits different symmetry subsets according to the functional engagement of the brain. We show that the resting state is a particular realization of the cerebral synchronization pattern characterized by a fibration symmetry that is broken <sup>7</sup> in the transition from rest to language. Our findings suggest that the brain's network symmetry at the local level determines its coherent function, and we can understand this relationship from theoretical principles.</p>","PeriodicalId":94282,"journal":{"name":"Research square","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11177955/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research square","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-4409330/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In his book 'A Beautiful Question' 1, physicist Frank Wilczek argues that symmetry is 'nature's deep design,' governing the behavior of the universe, from the smallest particles to the largest structures 1-4. While symmetry is a cornerstone of physics, it has not yet been found widespread applicability to describe biological systems 5, particularly the human brain. In this context, we study the human brain network engaged in language and explore the relationship between the structural connectivity (connectome or structural network) and the emergent synchronization of the mesoscopic regions of interest (functional network). We explain this relationship through a different kind of symmetry than physical symmetry, derived from the categorical notion of Grothendieck fibrations 6. This introduces a new understanding of the human brain by proposing a local symmetry theory of the connectome, which accounts for how the structure of the brain's network determines its coherent activity. Among the allowed patterns of structural connectivity, synchronization elicits different symmetry subsets according to the functional engagement of the brain. We show that the resting state is a particular realization of the cerebral synchronization pattern characterized by a fibration symmetry that is broken 7 in the transition from rest to language. Our findings suggest that the brain's network symmetry at the local level determines its coherent function, and we can understand this relationship from theoretical principles.

校准对称性打破支持从事语言活动的大脑网络的功能转换。
物理学家弗兰克-威尔切克(Frank Wilczek)在其著作《一个美丽的问题》[1]中指出,对称性是 "大自然的深层设计",支配着从最小粒子到最大结构的宇宙行为[1-4]。虽然对称性是物理学的基石,但它尚未被广泛应用于描述生物系统[5],尤其是人类大脑。在此背景下,我们研究了参与语言的人脑网络,并探索了结构连通性(连接组或结构网络)与感兴趣的中观区域(功能网络)的新兴同步之间的关系。我们通过一种不同于物理对称性的对称性来解释这种关系,这种对称性源自格罗登第克纤维的分类概念[6]。通过提出连接组的局部对称理论,我们对人类大脑有了新的认识,该理论解释了大脑网络结构如何决定其连贯活动。在允许的结构连通性模式中,同步会根据大脑的功能参与情况产生不同的对称子集。我们的研究表明,静息状态是大脑同步模式的一种特殊实现方式,其特点是在从静息状态过渡到语言的过程中纤维对称性被打破[7]。我们的研究结果表明,大脑在局部层面的网络对称性决定了它的连贯功能,我们可以从理论原理上理解这种关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信